
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Interactive and verifiable web services composition,
specification reformulation and substitution
Jyotishman Pathak
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Artificial Intelligence and Robotics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pathak, Jyotishman, "Interactive and verifiable web services composition, specification reformulation and substitution" (2007).
Retrospective Theses and Dissertations. 15586.
https://lib.dr.iastate.edu/rtd/15586

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15586?utm_source=lib.dr.iastate.edu%2Frtd%2F15586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Interactive and verifiable web services composition, specification reformulation

and substitution

by

Jyotishman Pathak

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Vasant Honavar, Major Professor

Samik Basu
Drena Dobbs
Shashi Gadia
Robyn Lutz

James McCalley

Iowa State University

Ames, Iowa

2007

Copyright c© Jyotishman Pathak, 2007. All rights reserved.

www.manaraa.com

UMI Number: 3289388

3289388
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

DEDICATION

To my family

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1

1.1 Service-Oriented Computing . 1

1.2 Motivation: Web Service Composition . 3

1.2.1 What are Web Services? . 4

1.2.2 What is Web Service Composition? . 7

1.2.3 Research Questions and Challenges . 9

1.3 Goals and Main Results . 11

1.4 Thesis Outline . 14

CHAPTER 2. RELATED WORK . 16

2.1 Web Services: Standards and Related Technologies 16

2.2 Web Service Composition . 19

2.2.1 Techniques based on Formal Methods 19

2.2.2 Techniques based on AI Planning . 22

2.2.3 Techniques based on Model-Driven Architectures 25

2.2.4 Techniques based on Graph Theory . 26

2.3 Additional Research Areas Related to Web Service Composition 28

2.3.1 Web Service Substitution . 28

www.manaraa.com

iv

2.3.2 Web Service Adaptation . 30

2.4 Discussion . 32

CHAPTER 3. WEB SERVICES AND LABELED TRANSITION SYSTEMS 34

3.1 Representing Web Services as Labeled Transition Systems 34

3.1.1 Labeled Transition Systems . 35

3.1.2 Equivalence of Labeled Transition Systems 39

3.1.3 Composition of Labeled Transition Systems 41

3.2 Transforming Web Service Descriptions to Labeled Transition Systems 42

3.2.1 Mapping State Machines to Labeled Transition Systems 43

3.2.2 Mapping BPEL to Labeled Transition Systems 44

3.3 Discussion . 47

CHAPTER 4. WEB SERVICE COMPOSITION 49

4.1 Introduction and Problem Description . 49

4.2 Illustrative Example . 52

4.3 Our Approach . 55

4.3.1 Service Composition in MoSCoE: An Overview 55

4.3.2 Algorithm for Mediator Synthesis . 55

4.3.3 Analysis of Failure of Composition . 62

4.3.4 Theoretical Analysis . 64

4.3.5 Composition using Non-Functional Requirements 66

4.4 Discussion . 69

CHAPTER 5. WEB SERVICE SPECIFICATION REFORMULATION . . 72

5.1 Introduction and Problem Description . 72

5.2 Illustrative Example . 74

5.3 Our Approach . 78

5.3.1 Functionally Equivalent Web Services 78

5.3.2 Web Service Dependency Matrix . 80

5.3.3 Generation of the Dependency Matrix 82

www.manaraa.com

v

5.3.4 Algorithm for Reformulation-based Web Service Composition 85

5.4 Discussion . 91

CHAPTER 6. WEB SERVICE SUBSTITUTION 94

6.1 Introduction and Problem Description . 94

6.2 Illustrative Example . 96

6.3 Our Approach . 98

6.3.1 Overview . 98

6.3.2 Representing Web Service Properties in Mu-Calculus 100

6.3.3 Quotienting Mu-Calculus Properties . 102

6.3.4 Substitutability of Web services . 106

6.3.5 Theoretical Analysis . 108

6.4 Discussion . 109

CHAPTER 7. SEMANTIC INTEROPERABILITY 111

7.1 Introduction and Problem Description . 111

7.2 Ontologies and Mappings . 113

7.3 Our Approach . 116

7.3.1 Ontology-based Service Discovery . 117

7.3.2 Ontology-based Service Composition . 122

7.4 Discussion . 129

CHAPTER 8. SYSTEM ARCHITECTURE AND EVALUATION 131

8.1 MoSCoE Architecture . 131

8.2 Implementation . 134

8.2.1 Back-End Implementation . 135

8.2.2 Front-End Implementation . 137

8.3 Empirical Evaluation . 141

8.3.1 Health4U Case Study . 141

8.3.2 e-Warehouse Case Study . 146

www.manaraa.com

vi

CHAPTER 9. CONCLUSIONS . 148

9.1 Summary . 148

9.2 Contributions . 150

9.3 Further Work . 151

APPENDIX A. BPEL process description of e-Auction service 155

APPENDIX B. WSDL description of e-Auction service 157

BIBLIOGRAPHY . 159

www.manaraa.com

vii

LIST OF FIGURES

Figure 1.1 Diagram of a Service-Oriented Architecture 4

Figure 1.2 Relationship Between Standard Web Service Specifications 5

Figure 1.3 Service Input/Output & Behavioral Descriptions 6

Figure 1.4 Two Different Types of Composition Models 7

Figure 2.1 Web Services Protocol Stack . 17

Figure 3.1 Labeled Transition System representation of e-Buy service 36

Figure 3.2 Example Labeled Transition Systems 40

Figure 3.3 Composition of Labeled Transition Systems 42

Figure 3.4 State Machine representation of the e-Buy service 43

Figure 3.5 Labeled Transition System representation of e-Auction service 46

Figure 4.1 LTS representation of (a) Health4U (b) The Mediator 53

Figure 4.2 LTS representation of component services 54

Figure 4.3 LTS representation of component services 63

Figure 5.1 Reformulation-based Service Composition 74

Figure 5.2 LTS representation & mapping of e-Buyer service 75

Figure 5.3 LTS representation of component services 76

Figure 5.4 Dependency Matrices . 84

Figure 6.1 LTS representation of sample services 97

Figure 6.2 Quotienting Rules . 104

Figure 6.3 Results of Quotienting . 106

www.manaraa.com

viii

Figure 7.1 Weather Description with F-Sensor . 112

Figure 7.2 Weather Ontology of Company K1 . 114

Figure 7.3 Weather Ontology of Company K2 . 115

Figure 7.4 Sample QoS Taxonomy . 119

Figure 7.5 Workflow Schema Graph . 123

Figure 7.6 Ontology-Extended Workflow Component 125

Figure 7.7 Ontology-Extended Component Instance 127

Figure 8.1 MoSCoE Architectural Diagram . 132

Figure 8.2 UML Representation of a Labeled Transition System 135

Figure 8.3 Labeled Transition System Editor-1 . 137

Figure 8.4 Labeled Transition System Editor-2 . 138

Figure 8.5 Importing Labeled Transition Systems 139

Figure 8.6 Service Composition and Repository 140

Figure 8.7 Service Composition Error . 141

Figure 8.8 LTS representation of (a) Health4U’ (b) Health4U” 142

Figure 8.9 LTS representation of Health4U’ component services 143

Figure 8.10 LTS representation of Health4U’ mediator 143

Figure 8.11 LTS representation of Health4U” mediator 144

Figure 8.12 Composition Failure for Health4U’ mediator 145

Figure 8.13 LTS representation of e-Warehouse component services 146

Figure 8.14 LTS representation of e-Warehouse . 147

www.manaraa.com

ix

LIST OF TABLES

Table 2.1 Web Services Specifications . 18

Table 6.1 Semantics of Mu-Calculus formula . 100

www.manaraa.com

x

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude to my advisor Dr.

Vasant Honavar for his guidance in this Ph.D. thesis work. He is, and will always be, a great

source of inspiration to me. The constructive and insightful discussions that I have had with

him over the past few years, has motivated me to think outside the box and develop new ideas

for this work. I have always benefited from his constant encouragement, enthusiasm and zeal

for research.

I would also like to specially thank Dr. Samik Basu with whom I closely collaborated for

this research. Countless, and often un-scheduled, meetings with him have resulted in very

important and stimulating ideas that were instrumental for my thesis. I am privileged to

have him as a mentor and collaborator. Thanks also goes to Dr. Robyn Lutz who gave me

insights in software engineering requirements and with whom I collaborated on many accounts,

to Dr. Drena Dobbs for very important suggestions in developing the protein-protein interface

database, and to Dr. James McCalley for introducing me to condition monitoring of power

transformers. I also extend my warm thanks to Dr. Shashi Gadia for his support and agreeing

to be a member of my committee.

I have also received a lot of support from my A.I. Research Lab group members and I

am grateful for all their efforts. Thanks to Dr. Doina Caragea, Dr. Jun Zhang, Dr. Jie

Bao, Neeraj Koul, and Feihong Wu—it has been a real pleasure working with all of you. I

am also thankful to Dr. Yong Jiang, Yuan Li, Hieu Pham, Mohammed Alabsi, Rakesh Setty,

Mahantesh Hosamani and Melissa Yahya for their help and collaboration on many occasions.

Thanks also to Lanette Woodard and Linda Dutton for their assistance and guidance in many

matters.

www.manaraa.com

xi

On the personal front, I am eternally grateful to my parents, Adhar and Sangeeta Pathak,

for their endless love and support. I would also like to thank my brother, Ujjal Pathak, for

being a very caring and understanding friend. A very special thanks also goes to my partner,

Divya Ranganathan, who has been by my side in all aspects of my life, and whose unrelenting

love, encouragement and perseverance has played a significant role in the completion of my

thesis. Last but not the least, I thank my friends/elders Sudip and Katyayani Seal, Bhaskar

Choudhury, Sonia Lall, Satyam Bhuyan, Porismita Borah, Ankit Saran, Haseena Ahmed, Arun

and Kobita Barua, Madan and Jahnabimala Bhattacharya, Anantharaman Kalyanaraman,

Kirthi Rajagopalan, Flavian and Athena Vasile, and others I may have forgotten, who made

my stay in Ames a memorable one.

Finally, I am grateful to the National Science Foundation (grants IIS 0219699, 0540293,

0702758), the Power Systems Engineering Research Center, and the Center for Computational

Intelligence Learning & Discovery at Iowa State University for funding this research work.

www.manaraa.com

xii

ABSTRACT

Recent advances in networks, information and computation grids, and WWW have resulted

in the proliferation of physically distributed and autonomously developed software components

and services. These developments allow us to rapidly build new value-added applications from

existing ones in various domains such as e-Science, e-Business, and e-Government. Towards

this end, this dissertation develops solutions for the following problems related to Web services

and Service-Oriented Architectures:

1. Web Service Composition: The ability to compose complex Web services from a

multitude of available component services is one of the most important problems in

service-oriented computing paradigm. In this dissertation, we propose a new framework

for modeling complex Web services based on the techniques of abstraction, composition

and reformulation. The approach allows service developers to specify an abstract and

possibly incomplete specification of the composite (goal) service. This specification is

used to select a set of suitable component services such that their composition realizes

the desired goal. In the event that such a composition is unrealizable, the cause for

the failure of composition is determined and is communicated to the developer thereby

enabling further reformulation of the goal specification. This process can be iterated

until a feasible composition is identified or the developer decides to abort.

2. Web Service Specification Reformulation: In practice, often times the composite

service specification provided by the service developers result in the failure of composi-

tion. Typically, handling such failure requires the developer to analyze the cause(s) of

the failure and obtain an alternate composition specification that can be realized from

the available services. To assist developers in such situations, we describe a technique

www.manaraa.com

xiii

which given the specification of a desired composite service with a certain functional

behavior, automatically identifies alternate specifications with the same functional be-

havior. At its core, our technique relies on analyzing data and control dependencies of

the composite service and generating alternate specifications on-the-fly without violating

the dependencies. We present a novel data structure to record these dependencies, and

devise algorithms for populating the data structure and for obtaining the alternatives.

3. Web Service Substitution: The assembly of a composite service that satisfy a de-

sired set of requirements is only the first step. Ensuring that the composite service,

once assembled, can be successfully deployed presents additional challenges that need

to be addressed. In particular, it is possible that one or more of the component ser-

vices participating in a composition might become unavailable during deployment. Such

circumstances warrant the unavailable service to be substituted by another without vi-

olating the functional and behavioral properties of the composition. To address this

requirement, we introduce the notion of context-specific substitutability in Web services,

where context refers to the overall functionality of the composition that is required to be

maintained after replacement of its constituents. Using the context information, we in-

vestigate two variants of the substitution problem, namely environment-independent and

environment-dependent, where environment refers to the constituents of a composition

and show how the substitutability criteria can be relaxed within this model.

The work described above contributed to the design and implementation of MoSCoE—an

open-source platform for modeling and executing complex Web services (http://www.moscoe.org).

http://www.moscoe.org

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

This chapter provides an introduction to the main topics and background of the thesis. A

brief description of our approaches and an outline of the structure of the thesis is also provided.

1.1 Service-Oriented Computing

In today’s world, the ability to quickly deliver new applications is increasingly becoming

imperative for business organizations. They face rapidly changing market conditions, pressure

from competition and new regulations that demand compliance which drive the need for the IT

infrastructure to respond aptly in support of new business models and requirements. However,

since most of the enterprise and legacy applications were not designed to enable rapid adoption

and adaptation of functionality, they become a bottleneck in the already intricate IT landscape

of an organization for efficient and effective application development.

Service-Orientation aims to provide the underlying machinery that can potentially over-

come this drawback and realize such an “on-demand” IT environment by essentially supporting

three important requirements [114]: integration, virtualization and management. Integration

in this context refers to the ability to seamlessly combine multiple existing, and often hetero-

geneous, applications and resources across organizations. Virtualization, on the other hand,

is the ability to provide an uniform and consolidated access to the applications irrespective

of programming language used for its implementation, the server hosting the application, the

operating system on which it is running, and so on. And finally, management is the ability

to provide a logical architecture for managing computing resources using managed objects

and their relationships. These requirements are enabled by adopting a programming model

called Service-Oriented Computing (SOC) [142, 144, 145] which utilizes services as the build-

www.manaraa.com

2

ing blocks for fast, low-cost and efficient (distributed) application development. Services are

autonomous, self-describing and platform-agnostic computational entities that can perform

various functions ranging from responding to simple requests to complex enterprise processes.

They allow organizations to expose multiple applications, using standard interface description

languages, which can be accessed and invoked programatically over the network (Internet or

intranet) using widely adopted protocols and languages. Furthermore, SOC enables the ser-

vices to be published in repositories and dynamically discovered and assembled for building

massively distributed, interoperable and evolvable systems. Typically, they are built in a way

without preconceiving the context in which they will be used. Consequently, the provider and

consumer of a particular service are loosely coupled, and often inter-organizational.

In practice, there are two basic types of services: atomic and composite. Atomic services

are single network-accessible applications that can be invoked by sending a message. Upon

invocation, the service performs its task and (in some cases) produces a response to the invoker.

Thus, there is no ongoing interaction between the service requestor and the service. Examples

of services that would fall in this category would include the ones which given the zip code of

a city will output the current temperature or given the symbol of a company will provide the

current stock quote. The composite services, on the other hand, comprise of multiple atomic

(and/or other composite) services and require an extended interaction between the service

requestor and the set of services providing a particular functionality. Many e-Commerce sites

such as Amazon.com, eBay.com etc. fall into this category. For example, in order to purchase

a digital camera at eBay, a user has to first search for it using different criteria, possibly read

the reviews and analyze user’s ratings, search for relevant accessories, and then finally provide

payment and shipping information to complete the purchase.

The example services cited above are commonly referred as “services over the Web” and

are mainly developed for human consumption. However, even though there is an abundance of

Web-based applications primarily targeted for humans, services are also meant to be used by

other applications (and possibly by other services) directly, and not only by humans. In other

words, the goal of SOC is to enable pure service-to-service interactions as opposed to only

www.manaraa.com

3

service-to-human interactions. Nevertheless, it is widely acknowledged that to enable service-

to-service interactions there should be a provision for services to automatically find, select and

communicate with other services, which in turn requires the services to explicitly specify their

“semantics” unambiguously. The semantics of a service should capture various aspects includ-

ing functional properties, behavioral (control/data-flow) properties, transactional properties,

quality of service properties, and so on.

From the above discussion, it is stems that SOC model poses many challenges and research

questions in different aspects including service specification, discovery, composition, execution,

and management. In this dissertation, we focus mainly on the fundamental concepts pertaining

automatic composition of services.

1.2 Motivation: Web Service Composition

One of the most widely adopted ways for realizing the SOC model into an architecture

is called a Service-Oriented Architecture (SOA) [72, 73], which in essence is a logical way

for developing distributed software system by providing services to end-user applications or

to other services via published and discoverable interfaces. OASIS (the Organization for the

Advancement of Structured Information Standards) defines SOA as follows:

Definition 1 (Service-Oriented Architecture [1]) A Service-Oriented Architecture (SOA)

is paradigm for organizing and utilizing distributed capabilities that may be under the control

of different ownership domains. It provides a uniform means to offer, discover, interact with

and use capabilities to produce desired effects consistent with measurable preconditions and

expectations.

In general, an SOA comprises of three different players (Figure 1.1): (i) the service provider

is an entity which provides the service; (ii) the service requestor is an entity which searches

for and invokes a particular in order to fulfill its goals, and finally (iii) a discovery agency

is an entity which acts as a repository or a directory of services. When a provider wants to

make available a particular service, it publishes information about how to invoke the service

www.manaraa.com

4

Service Requestor Service Provider

Discovery Agencies

Find Publish

Interact

Figure 1.1 Diagram of a Service-Oriented Architecture

(e.g., URL, protocols) along with the interface description of the service itself in a discovery

agency. A client who wants to use a particular service, searches for it in the repository and then

interacts with the service provider directly for service invocation. Even though this framework

is simplistic, it raises very interesting research issues with respect to specification (e.g., how to

specify the syntax and semantics of a service unambiguously?), discovery (e.g., how to find the

best service suitable for a particular job?), composition (e.g., how to assemble multiple atomic

services for a particular job?), execution (e.g., how to execute services securely), and so on. As

mentioned earlier, the main focus of our work is to develop techniques for automatic service

composition.

Note that a SOA is not tied to a specific implementation technology. It may be implemented

using a wide-range of technologies including Web Services [10], RPC [41], DCOM [77], REST

[75] or CORBA [42]. In our work, we only consider Web Services-based SOA, which we describe

in the following.

1.2.1 What are Web Services?

According to the W3C (World Wide Web Consortium) Web Services Architecture [44], Web

services provide a standard means of interoperating between different software applications,

running on a variety of platforms and/or frameworks. More formally, the architecture defines

Web services as follows:

www.manaraa.com

5

Web Services

WSDL

UDDI

SOAP

Enables communication between

Binds to

Enables discovery of

Is accessed using

Describes

Figure 1.2 Relationship Between Standard Web Service Specifications [72]

Definition 2 (Web Service [44]) A Web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL [62]). Other systems interact with the Web

service in a manner prescribed by its description using SOAP [90] messages, typically conveyed

using HTTP with an XML [51] serialization in conjunction with other Web-related standards.

This definition, represented pictorially in Figure 1.2, outlines two fundamental requirements

of Web services:

• they communicate by exchanging data formatted as XML documents using SOAP over

Internet protocols (such as HTTP);

• they provide a service description that, at minimum, consists of a WSDL document.

where, SOAP provides a standard, extensible, and composable framework for packaging and

exchanging XML messages and WSDL describes Web services starting with the messages that

are exchanged between the service requester and provider.1 Thus, such a description describes

a service in terms of functionalities that it exports which can be invoked by input/output

messages. However, in many cases a simple description of inputs and outputs is not enough

1We provide more details on these technologies in Chapter 2

www.manaraa.com

6

shipping

purchase

login

payment

login

search

payment

shipping

purchase

search

(a)

purchase
purchase

search

payment

shipping

login
shipping

payment

search

login

(b)

Figure 1.3 Input/Output & Behavioral Descriptions of (a) e-Com and (b)

e-Com’ services

because it does not represent the actual “behavior” of a service [26, 29, 101]. For instance,

consider our previous example (Section 1.2) where a user wants to interact with an e-Commerce

service to purchase items. The input/output interface of such a service, e-Com, can be repre-

sented in Figure 1.2.1(a) which essentially allows a client to search for items of interest and

purchase them by providing payment and shipping information.2 In addition, it requires the

client to login (i.e., authenticate) first before using the search functionality. A similar service

e-Com’, with same input/output interface, is shown in Figure 1.2.1(b) which provides the same

functionality, but requires the client to login only when it is ready to make a purchase. That

is, the behavioral model of e-Com’ is different from that of e-Com, even though they have the

same input/output interface, which in turn implies that the behavioral model of the clients

that interact with these two services will also be different. However, such differences cannot

be captured by description languages such as WSDL. This has warranted the development of

much more expressive languages such as WS-BPEL [16] and WS-CDL [107] which allow to

explicitly represent the services in terms of exact sequence of operations that they support.

In the Web services domain, such descriptions are commonly referred to as conversations and

can be represented using transition systems [100]. We provide more details on this topic in

Chapter 3.

2This example and the figure has been adopted from [29].

www.manaraa.com

7

(a) (b)

Figure 1.4 Two different types of composition [32]: (a) Orchestra-

tion-based (b) Choreography-based

1.2.2 What is Web Service Composition?

As outlined above, research in Web services, and SOC in general, span across multiple areas.

One of the areas that has received a lot of attention from both academia and industry in the

recent past is Web Service Composition which is the ability to aggregate multiple services

into a single composite service that would provide a certain functionality, which otherwise

cannot be provided by a single service. The motivation for service composition is based on the

requirement for developing “value-added” services and applications by selecting and integrate

pre-existing services. Such an approach has tremendous benefits in terms of reducing the

cost and effort for building newer services from scratch, thereby promoting rapid application

development. Additionally, the resulting composite services may be used as basic services in

further service compositions.

In practice, there are two different (and competing) notions of modeling Web service com-

positions [32]: orchestration (Figure 1.4(a)) and choreography (Figure 1.4(b)). Orchestration

describes how multiple services can interact by exchanging messages including the business

logic and execution order of the interactions from the perspective of a single endpoint (i.e.,

the orchestrator). It refers to an executable process that may result in a persistent, multi-

step interaction model where the interactions are always controlled from the point of view of

a single entity involved in the process. Choreography, on the other hand, provides a global

www.manaraa.com

8

view of message exchanges and interactions that occur between multiple process endpoints,

rather than a single process that is executed by a party. Thus, choreography is more akin to a

peer-to-peer (P2P) architecture and offers a means by which the rules of participation for col-

laboration are clearly defined and agreed upon. Even though there exists competing standards

for both the models of composition, namely WS-BPEL [16] for orchestration and WS-CDL

[107] for choreography, it is widely accepted that both orchestration and choreography can

(and should) co-exist within one single environment.

Assuming that either model of composition is chosen, in general, there are two main ways

for realizing a feasible composition: manually and (semi-) automatically. Manual composition

mostly takes place statically during the design-time when the architecture and the design of the

software system is being planned. Here, the services to be used are selected, integrated together,

and finally deployed. As obvious, such a process will become cumbersome and error-prone,

specially when modeling complex software systems comprising of hundreds, if not thousands, of

services. Furthermore, the composite system will work fine as long as there is no (unexpected)

change in the component services that take part in the composition. But, in certain cases

the entire composite service might fail to execute if one or more of the component services

become unavailable/inaccessible. On the other hand, (semi-) automatic composition tries

to address some of these drawbacks by providing techniques, which given the specification

of a composite (or goal) service, will automatically select and integrate a set of component

services that realizes the goal. Depending on the technique used, the specification can be

provided as a transition system (see Section 2.2.1), a logic formula (see Section 2.2.2), an

UML diagram (see Section 2.2.3), and so on. A positive aspect of such techniques is that it

reduces the cognitive burden on the service developer by essentially removing the requirement

to manually discover and assemble component services. However, in spite of its advantages,

(semi-) automatic composition is not widely pursued in the industry in part due to added

complexity and overhead, lack of robust tooling support and development environments, and

scalability and efficiency problems. We discuss some of these issues and challenges and outline

how we address them in this thesis in the proceeding sections.

www.manaraa.com

9

1.2.3 Research Questions and Challenges

As illustrated in the previous sections, Web service composition, and SOC in general, raises

many challenging issues. These include:

• Service Specifications: A very important requirement to develop effective techniques

for service composition is to build description languages that are expressive enough to

capture various functional and behavioral properties of services. It should be intuitive,

yet unambiguous, in representing the service semantics. More specifically, the issues that

need to be addressed in this context include: (i) how easy it is for a service developer

to comprehend the language and model composite (goal) service specifications? (ii) how

should the composition engine interpret the developer’s requests? (iii) how to verify

that the language is (logically) correct? (iv) what is the formal basis for representing a

composition of services from the goal service specification?

• Service Discovery: Assuming that the composition engine is able to interpret a service

developer’s request for building a composition, the next very important step in this pro-

cess is to find suitable candidate services that can provide (in-part or entirety) the desired

functionality. In practice, there might be hundreds, if not thousands, of candidate ser-

vices that the composition engine will have to analyze which can lead to an exponential

blowup. Furthermore, in addition to functional, the service developer might also provide

non-functional requirements (e.g., Quality of Service) as part of the composition request.

Consequently, the service composition engine should be capable of handling such re-

quests. More specifically, the issues that need to be addressed in this context include:

(i) how can service providers advertise their services that would enable efficient discov-

ery? (ii) how to do service matchmaking based on functional (input/output) as well as

behavioral properties? (iii) how to disambiguate between services that provide the same

functionality, but have different specifications or vice-versa? (iv) how to optimize the

search?

• Verification and Validation of Composition: Given the specification of a goal service,

www.manaraa.com

10

once a feasible composition is determined, it is imperative to validate and verify that the

composition satisfies all the desired requirements. Such a verification step can be done

statically (before execution) and/or dynamically (during execution). Static verification

can be usually done using model-checking techniques [70] whereas dynamic verification

requires empirical test-runs. More specifically, the issues that need to be addressed in

this context include: (i) how to model the properties (both functional and behavioral)

that we want to verify? (ii) how to develop new or extend existing techniques in formal

methods-based verification for service composition? (iii) how to build test-cases for

dynamic verification?

• Service Specification Reformulation: During the process of building a feasible composi-

tion, it might happen that certain requirements of the goal service cannot be met by

any of the available component services, thereby resulting in the failure of composition.

Typically, in such a situation, the service developer has to manually modify the goal

service specification and repeat the composition procedure. As expected, this process

can be cumbersome and non-trivial for complex specifications. Instead a more practical

solution will try to automatically correct the failures without any guidance from the de-

veloper and without changing the ‘overall’ functionality of the desired composition. This

reformulation of the goal service can lead to situations in which it can be realized by

suitably composing a set of component services. More specifically, the issues that need

to be addressed in this context include: (i) how to formally characterize the problem of

reformulation of the goal service specification during composition? (ii) how to represent

the functional and behavioral properties of a service that can be used for reformulation?

(iii) how to plug-in specification reformulation as part of the composition procedure,

that is, how to enable composition and reformulation simultaneously?

• Analysis for Compatibility and Replaceability: Assuming that a feasible composition WG

has been obtained, in many cases it might happen that one of the candidate services

Wi becomes unavailable either because the service provider for Wi chooses not to offer

it any more or updates it (e.g., by adding/removing some of Wi’s features). In such

www.manaraa.com

11

circumstances, Wi has to be substituted by an ‘equivalent’ service W
′

i , which provides

the exact same functionality. Similar to verification, here also substitution can be carried

out statically and/or dynamically. More specifically, the issues that need to be addressed

in this context include: (i) how to find a service that is equivalent to another? (ii) how

to ensure that the replacement service is compatible with the overall functionality of the

composition? (iii) how to build approaches for dynamic substitution?

• Execution Management and Monitoring: As with any distributed system, management

and monitoring of service execution is a big research challenge. This challenge becomes

even more formidable when the goal is to enable autonomic [131] capabilities that would

possibly allow management related problems to resolve with minimal (and in ideal cases,

no) human intervention. More specifically, the issues that need to be addressed in this

context include: (i) how to enable services to self-configure and optimize themselves de-

pending on the operating conditions? (ii) how to enable services to self-heal by discov-

ering, diagnosing and reacting to disruptions? (iii) how to enable services to self-protect

by anticipating and detecting hostile behaviors (e.g., denial-of-service attacks)?

• Tooling Support: Last, but not the least, an important challenge for wide-scale adoption

of service composition techniques is to provide robust and intuitive tooling support. More

specifically, the issues that need to be addressed in this context include: (i) how to build

user-friendly interfaces for service modeling by leveraging approaches from HCI (Human

Computer Interaction)? (ii) how to build tools that are efficient in terms of resource

usage (e.g., tools that can be used in mobile computing devices such as PDA)?

1.3 Goals and Main Results

Motivated by the challenges and research questions as illustrated in the previous section

(Section 1.2.3), we propose a formal and comprehensive approach and an end-to-end framework

for Web service composition which simultaneously addresses the following issues:

• Modeling Complex Web Services using Abstraction, Composition and Reformulation: We

www.manaraa.com

12

proposed an interactive and verifiable framework Modeling Web Service Composition and

Execution (MoSCoE). This framework provides the architectural foundation for incre-

mental development of composite services based on three basic principles: abstraction,

composition and reformulation. By abstraction, we refer to the ability of MoSCoE that

allows the users (i.e., service developers) to specify an abstract and possibly incomplete

specification of the (goal) service. This specification is used to select a set of suitable

component services such that their composition realizes the desired goal in terms of both

functional and non-functional requirements. In the event that such a composition is un-

realizable, the cause for the failure of composition is determined and is communicated

to the user thereby enabling further reformulation of the goal specification. This process

can be iterated until a feasible composition is identified or the user decides to abort.

• Web Service Specification Reformulation: We propose an approach for enabling Web

service composition via automatic reformulation of the desired (or goal) service speci-

fications in the event when the service composition algorithms fail to realize the goal

service whenever the available component services cannot be used to “mimic” the struc-

ture of the goal service, even if the overall functionality of the goal service can be realized

by an alternative formulation of the goal specification. In particular, we model services

in our technique using labeled transition systems (LTS) and describe an efficient data

structure and algorithms for analyzing data and control flow dependencies implicit in a

user-supplied goal LTS specification to automatically generate alternate LTS specifica-

tions that capture the same overall functionality without violating the data and control

dependencies implicit in the original goal LTS, and determine whether any of the alter-

natives can lead to a feasible composition. The result is a significant reduction in the

need for the tedious manual intervention (by the service developers) in reformulating

specifications by limiting such interventions to settings where both the original goal LTS

as well as its alternatives cannot be realized using the available component services.

• Context-Specific Web Service Substitution: We propose a general technique for context-

specific Web service substitution, where context refers to the overall functionality of the

www.manaraa.com

13

composition that must be preserved after the substitution. In particular, we introduce

two variants of the context-specific service substitutability problem that are based on

weaker and flexible requirements compared to existing techniques. Our solution makes

it possible to safely replace a service Wi with W
′

i within the context of a given compo-

sition, even though W
′

i may not meet the stronger requirement of being functionally or

behaviorally equivalent to Wi. More precisely, we represent a composition (denoted by

||) of two services W1 and W2 that realizes a specific functionality or property (denoted

by ϕ and expressed in temporal logic [69]) by W1 || W2 |= Φ. In the event W1 becomes

unavailable, the technique identifies candidates (W
′

1) that can be used as replacement for

W1 in the environment W2 and property Φ.

• Service Interoperability: We provide an approach for ontology-based service discovery and

composition. Web services, in general, are autonomously developed and maintained soft-

ware entities. Consequently, it is unrealistic to expect syntactic and semantic consistency

across independently developed service libraries that are analyzed for for composition,

reformulation and substitution. Towards this end, realizing the vision of the Semantic

Web, i.e., supporting seamless access and use of information sources and services on the

Web, we build on recent developments in ontology-based solutions on information integra-

tion to develop principled solutions to addressing the semantic interoperability problem

in service-oriented computing. Specifically, we introduce ontology-extended components

and mappings between ontologies to facilitate discovery and composition of semantically

heterogeneous component services.

• Open-Source Implementation and an Empirical Study: We provide an implementation

of the proposed techniques in the MoSCoE prototype. We adopt emerging Web services

standards including WSDL and BPEL. Additionally, we provide case studies demonstrat-

ing the applicability of the tool. The implementation is made open-source (under GNU

Public License) and can be accessed at http://www.moscoe.org.

http://www.moscoe.org

www.manaraa.com

14

The results of this thesis have been published in international journals, books, and confer-

ence and workshop proceedings [146, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158].

1.4 Thesis Outline

The rest of the dissertation is organized as follows:

• Chapter 2: A brief introduction to various Web services standards together with a repre-

sentative set of existing work in Web services composition, adaptation and substitution

is presented.

• Chapter 3: A general framework for representing the behavioral descriptions of Web

services as labeled transition systems is given. We show how such a representation can

be used to model composition of services as well as finding out equivalence services.

We also show how current Web service description languages (e.g., WS-BPEL) can be

translated to labeled transition systems.

• Chapter 4: The problem of composing Web services is formally defined and an approach

for building composite services is proposed. We show that our approach can be applied

to model complex services that satisfy both functional and non-functional (e.g., Quality

of Service) requirements. We also provide soundness and completeness guarantees of the

proposed algorithms.

• Chapter 5: The problem of Web service specification reformulation is introduced and a

solution is proposed. We illustrate how our technique can be applied to automatically

correct failure(s) in the composition process without any guidance from the developer

and without changing the ‘overall’ functionality of the desired composition.

• Chapter 6: An approach for Web service substitution is proposed. At its core, the

technique considers the ‘context’ (i.e., the overall functionality) of the composition and

analyzes substitution in a manner that preserves the context after the substitution is

carried out. We also demonstrate that our technique is sound and complete and relaxes

www.manaraa.com

15

the stronger requirement of functional/behavioral equivalence between services proposed

in the existing work.

• Chapter 7: The techniques for Web service composition are extended to yield an ap-

proach for discovering and composition of Web services. We introduce the notion of

ontology-extended components and mappings between ontologies to facilitate interoper-

ability between multiple, semantically heterogeneous services.

• Chapter 8: A system called MoSCoE (Modeling Web Service Composition and Execu-

tion, http://www.moscoe.org) for interactive Web service composition is designed. We

describe the architectural and implementation details of MoSCoE as well as illustrate its

usability using case studies.

• Chapter 9: We conclude with a summary, a list of contributions that this dissertation

makes and several directions for future work.

http://www.moscoe.org

www.manaraa.com

16

CHAPTER 2. RELATED WORK

This chapter surveys a representative set of existing literature that is related to the work

presented in this thesis. The chapter is divided into three main sections. The first section

focuses on various Web services standards and technologies that are at present already in

place or developed by the services computing community. The second section provides a

literature review of state-of-the-art in automatic Web service composition. Research areas

that are closely related to and are complementary to Web service composition, namely Web

service substitution and adaptation, are surveyed in the third section.

2.1 Web Services: Standards and Related Technologies

We provided the definition of Web services as outlined by the Web Services Architecture

[44] in Section 1.2.1, which we re-state for the sake of readability: A Web service is a software

system designed to support interoperable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format (specifically WSDL [62]). Other

systems interact with the Web service in a manner prescribed by its description using SOAP

[90] messages, typically conveyed using HTTP with an XML [51] serialization in conjunction

with other Web-related standards. From this definition, it can be inferred that at the conceptual

level, Web services are Web-accessible software system that provide certain functionality which

can be invoked and respond to message interactions based on an XML messaging standard.

Each service can be identified uniquely by an URI (Uniform Resource Identifier) and provide

an interface to methods which can be executed via a message handler. The handler implements

the logic for processing the messages (i.e., instructions) detailing what data should be passed

on to what method for execution. On the other hand, at the physical level, Web services are

www.manaraa.com

17

Figure 2.1 Web Services Protocol Stack

built from a stack of emerging standards and protocols (Figure 2.1 & Table 2.1). Although

an elaborate discussion of all the specifications is beyond the scope of this thesis, we briefly

describe some of the existing standards which are pertinent within our context of Web service

composition.1 These include:

• Web Services Description Language: The Web Services Description Language (WSDL)

[62] is an XML-based language submitted to W3C for recommendation and is used to

describe network services. The language represents services as network endpoints (or

ports) and provides a model describing the communication between multiple services.

The model introduces the notion of messages which are abstract representation of data

being exchanged, and port types that are an abstract collection of various operations

supported by a particular service. The data format specifications for a particular port

type along with a concrete protocol constitutes a reusable binding, where the messages

1Interested readers can find more information about the entire spectrum of Web services protocols in [143,
177, 189, 190].

www.manaraa.com

18

Layers Sub-Layers Standards

Business Domain Business Domain Specific Extensions Various

Management
Distributed Management WSDM [54], WS-Manageability [165]

Provisioning WS-Provisioning [192]

Security

Security WS-Security [132]
Security Policy WS-SecurityPolicy [66]

Secure Conversation WS-SecureConversation [14]
Trusted Messsage WS-Trust [15]
Federated Identity WS-Federation [118]

Portal Portal & Presentation WSRP [185]

Transactions

Asynchronous Services ASAP [80]

Transaction
WS-AtomicTransactions [56],
WS-Coordination [57]

Orchestration BPEL4WS [16], WS-CDL [107]

Messaging

Events & Notifications WS-Eventing [48], WS-Notification [86]
Multiple Message Sessions WS-Enumeration [7], WS-Transfer [8]

Addressing
WS-Addressing [49],
WS-MessageDelivery [106]

Reliable Messaging
WS-ReliableMessaging [38],
WS-Reliability [104]

Message Packaging SOAP [90], MTOM [89]

Metadata

Publication & Discovery UDDI [53], WSIL [21]
Policy WS-Policy [19], WS-PolicyAssertions [50]

Message Description WSDL [62]
Metadata Retrieval WS-MetadataExchange [20]

Table 2.1 Web Services Specifications

and operations are bound to the protocol and the format. A client program interacting

with the Web service can read its WSDL description to determine what operations can

be invoked. During the invocation process, the client can send SOAP [90] messages over

various Internet protocols such as HTTP.

• Web Services Business Process Execution Language: The Business Process Execution

Language (BPEL) [16] is an XML-based executable language for modeling business pro-

cesses, which in general, manifest as Web services defined using WSDL. BPEL is an

orchestration language (Figure 1.4(a)), and hence focuses on the view of one participant

(i.e., central control of behavior), where the participants are represented using a state

transition model. The model exposes a set of publicly observable behaviors which in-

clude when to send/receive messages, when to compensate for failed transactions, when

to execute functional operations (e.g., retrieving data from a file), and so. In addition to

this messaging facility, BPEL allows writing expression and queries in multiple languages

www.manaraa.com

19

(such as XPath [63]) and supports structured-programming constructs including execu-

tion of commands in sequence (e.g., if-then-else, while) and parallel (e.g., flow).

Refer to Section 3.2.2 for more details on BPEL.

• Web Services Choreography Description Language: The Web Services Choreography De-

scription Language (WS-CDL) [107] is an XML-based language that can be used to de-

scribe the common and collaborative observable behavior of multiple services that need

to interact in order to achieve some goal. As opposed to BPEL, WS-CDL describes this

behavior from a global or neutral perspective rather than from the perspective of any

one party. Such an interaction typically happens through some common understanding

between the participating services or by a declaration of interest in the progress of one

service by another. The global model ensures that no single party adopts a biased view

towards other services. Instead WS-CDL adopts a collaborative observable behavior of

all the services such that on one service can exert any control over any other service.

Consequently, each service carries out its functionality in a distributed fashion and has

a distinct relationship with its peers.

2.2 Web Service Composition

In this section, we consider again the work presented in the previous section which is

targeted towards the problem of Web service composition. In particular, we focus on techniques

that leverage existing approaches in different domains such as artificial intelligence, software

engineering, human-computer interaction, and so on.

2.2.1 Techniques based on Formal Methods

Formal Methods [47] is an area of study that provides a language for describing a software

artifact (e.g., specifications, design, source code) such that formal proofs are possible, in prin-

ciple, about properties of the artifact so expressed. In the context of Web service composition,

typically the property proved is that an implementation is functionally correct, that is, it ful-

fills a particular specification. In the recent past, many research efforts for service composition

www.manaraa.com

20

have adopted formal methods techniques to leverage its mathematically-precise foundation for

providing theoretically sound and correct formalisms. We discuss few of those approaches in

the following paragraphs.

Pistore et al. [162, 163] represent Web services using transition systems [100] that com-

municate via exchanging messages. Their approach relies on planning via symbolic model

checking techniques to determine a parallel composition of all the available services, and

then generate a controller to control the composed services such that it satisfies the user-

specified requirements. Informally, if W = {W1,W2, . . . Wn} is the set of available services,

ρ is the service developer-specified requirement (i.e., ρ describes the goal service specifica-

tion), and || is the composition operator, the aim is to determine a “controller” Wc, such that:

Wc B (W1|| . . . ||Wn) |= ρ. The goal specification is described using a temporal logic-based

language called EaGLe, whereas the transition systems representing the component services

are generated either from OWL-S [188] or BPEL [164]. Furthermore, the transitions systems

in their approach are non-deterministic with partial observability (i.e., only partial information

is available at any given state). Consequently, due to the incomplete knowledge on the initial

states and on the outcome of the actions, at each execution step, each service could be in a set

of states that are equally plausible given the initial knowledge and observable behavior.

Berardi et al. [30, 31, 32] also provide a formal framework where services are represented

using transition systems. The approach assumes that the services exchange messages accord-

ing to a pre-defined communication topology (referred to as the linkage structure), which is

expressed as a set of channels. Two inputs are given to the composition synthesis system: (i)

a desired goal service behavior (i.e., the set of all possible conversations) specified as a labeled

transition system, and (ii) the composition environment which comprises of the linkage struc-

ture, the set of component services and the messages exchanged between them. The output of

the synthesis is a mediator (also represented as a labeled transition system) which orchestrates

the execution of the component services such that their conversations are compliant with the

goal service specification. The authors encode the composition problem as a Propositional

Dynamic Logic (PDL) [93] formula Φ and reduce the generation of the mediator to the satisfi-

www.manaraa.com

21

ability of Φ. Furthermore, formal proofs are provided stating that a composition exists if and

only if Φ is satisfied and that the model of Φ exactly represents the composite service.

Hamadi and Benatallah [92] apply a petri net-based algebra to model the control flow and

capture semantics of complex Web service compositions. Their framework provides various

structured-programming constructs such as sequence, alternative, iterative and arbitrary, and

the authors show how these constructs can be used to determine and verify a composition. How-

ever, [92] does not provide an approach for manual or (semi-) automatic service composition.

SELF-SERVE [27, 28] built on this work to provide the ability for dynamically composing and

executing Web services represented as state charts. One of the key features of SELF-SERVE is

to adopt a peer-to-peer (P2P) computing environment for executing the (composite) services,

which in practice has multiple advantages (in terms of scalability, fault-tolerance etc.) com-

pared to centralized architectures. Similar to [32], here also a linkage structure between the

peer services is created which in turn is leveraged by the composition algorithm for generating

message routing tables, and in essence, creating the P2P conversation model.

Bultan et al. [55, 35, 78, 79] propose techniques for analyzing conversations of composite

Web services for both synchronous and asynchronous communication models. Synchronous

communication happens when a message sent by a service is received immediately by the

recipient service, whereas in asynchronous communication the message may not be received

immediately (i.e., the message may be queued). As expected, analysis within an asynchronous

messaging is much more difficult due to the added complexity of the message queues. In

particular, the authors represent services using finite state machines [100] augmented with

FIFO (First-In First-Out) message queues and develop methods for synchronizability and

realizability analysis, where synchronizability analysis determines whether a composite service

generates the same set of conversations under synchronous and asynchronous communication

models, and realizability analysis ascertains whether a given conversation protocol (e.g., the

goal service specification), modeled as a finite state machine, can be realized by a feasible

composition of component services which communicate asynchronously. Note that even though

this work is not directly related to developing algorithms for service composition, it addresses

www.manaraa.com

22

a very important problem of verifying the correctness of composition.

Gwen Salaün et al. [176] apply Process Algebra (PA) [99] to model Web services in at least

two different ways: (i) at design time, PA can be used to describe an abstract specification of the

system to be developed, which can be validated and used as a reference for implementation; (ii)

by applying reverse engineering, existing Web service interface descriptions can be translated

to PAs. Specifically, this work adopted Calculus of Communicating Systems (CCS) [129] as

the PA and demonstrated techniques for translating BPEL [16] processes into CCS, which can

then be verified to reason about properties specified in temporal logic.

Ferrara [74] advocates a thought similar to [176], that is, using Process Algebra (PA) for

modeling Web services to: (i) establish whether a service can substitute another service(s)

in a composition; (ii) develop Web services by adopting hierarchical-refinement techniques

[110, 112] that allow to begin with an abstract description of a process which can be refined

iteratively; (iii) analyze and find redundant services in a community; and (iv) verify desirable

properties specified in a temporal logic-based language. In particular, this works focuses on

providing a two-way mapping between BPEL/WSDL and Language of Temporal Ordering

Specifications (LOTOS) [68], one of the most expressive process algebra. The advantage of

using LOTOS (e.g., opposed to using CCS as proposed in [176]) is that it allows addressing

issues related to exchange of data during Web service interactions and dynamic service com-

positions. As a result, one can verify services that deals with messages and with messages,

where the properties of the services depend on the values (e.g., for a set of input values, some

properties are satisfied). Additionally, LOTOS allows defining abstract data types and opera-

tions on them, which correspond to the data type definitions in BPEL/WSDL specified using

XML Schema. Consequently, if a service is modeled using LOTOS (and is later mapped into

BPEL/WSDL), the data types can be checked and verified for desirable properties.

2.2.2 Techniques based on AI Planning

Planning [175], in general, can be regarded as an area of study that is concerned with

automatic generation of plans that will be able to solve a problem within a particular domain.

www.manaraa.com

23

Typically, a plan consists of sequence of actions, such that given an initial state or a con-

dition, a planner will suitably select a set of actions which, when executed according to the

generated plan, will satisfy certain goal conditions. In the context of Web services, a planning

domain can be represented by a sextuplet (W,S,A,−→, s0, sG), where W is the set of available

Web services, S is the set of all possible states of these services (world), A is the set of ac-

tions/functions provided by the services that the planner can perform in attempting to change

the state from one to another in the world, −→⊆ S × A × S is the set of state transitions

which denote the precondition and effects for execution of each action, and finally s0 ∈ S and

sG ∈ S are the initial and goal states, respectively, specified in the requirement of the Web

service requesters to indicate that the plan initiates its execution starting from state s0 and

terminates at state sG. Given this domain, many approaches have been proposed by applying

a variety of planning techniques that will generate a plan for realizing the goal requirements.

Planning Domain Definition Language (PDDL) [83] is one of the very widely known de-

scription languages in the planning domain and has influenced the development of Web service

description languages such as OWL-S [121] (Web Ontology Language for Services). McDermott

[123] extend PDDL by introducing the notion of “value of the action”, essentially representing

certain information that is created or learned as a consequence of executing a particular ac-

tion. The main intention of introducing this extension was to have the ability to capture the

information and the content of messages that are exchanged between the services. The work

demonstrates how this extended language can be used with estimated regression planners to

create conditional plans that achieve the desired goal. In particular, given a goal and an initial

situation, the technique does a situation-space search for a sequence of steps that achieve the

goal. A search state is a series of feasible steps starting in the initial situation and ending in

a situation which is potentially close enough to satisfy the goal. To make the search efficient,

the approach also proposes certain heuristics.

Medjahed et al. [126, 127] apply a rule-based planning technique for finding feasible com-

positions and introduced a declarative language for describing the goal requirements. The core

of the approach comprised of developing composability rules that consider and analyze syn-

www.manaraa.com

24

tactic and semantic properties of the Web services to devise a plan. Such rules, for example,

might specify that two Web services W1 and W2 are composable only if the output messages

of W1 are compatible with the input messages of W2. The composition model comprises of

four different steps: (i) during the specification phase, the requirements of the composition are

specified using an XML-based language (developed by the authors) called Composite Service

Specification Language (CSSL) which adopts an ontology-based model suitable for describ-

ing semantics-enabled Web services [124]; (ii) once the goal service specification is provided,

multiple plans are generated by a matchmaking algorithm leveraging a set of pre-defined com-

posability rules; (iii) at least one feasible plan is selected based on additional non-functional

constraints, and (iv) finally an executable code is generated in WSFL [113].

Sirin et al. [179] adopt Hierarchical Task Network (HTN) planning [134] for automated

composition of semantic Web services. The main motivation for using HTN was because the

concept of task decomposition in HTN planning is very similar to the concept of composite

process decomposition in OWL-S process ontology [121]. The authors provide an algorithm

for translating OWL-S service descriptions into SHOP2 [134] (the HTN planner used) domain

and device a planning procedure for generating feasible composition plans. In addition, [179]

also proves the correctness of their approach by showing the correspondence to the situation

calculus semantics of OWL-S.

SEMAPLAN [6] attempts to leverage traditional AI planning and information retrieval

techniques for building a semi-automated service composition tool. The technique relies on

domain-dependent/independent ontologies [88] for calculating semantic similarity scores be-

tween the concepts/terms in service descriptions, and applies this score to guide the searching

process of the planning algorithm. The planning algorithm is based on a cost-based heuristic

which leverages the semantic scores and is built on the Planner4J framework [181]. The exper-

imental results demonstrate that SEMAPLAN performs superior compared to the traditional

planning based techniques.

Similar to [6], Agarwal et al. [5] also combine traditional AI planning techniques with

semantics-based approaches to build an end-to-end solution for service composition. The ser-

www.manaraa.com

25

vices in this approach are represented using OWL-S descriptions and the composition is divide

into two parts: logical and physical. During logical planning, a planner is used to create com-

position plans based on service ‘types’ according to the desired functional requirements. If

one or more composition plans can be obtained, then during the physical composition phase

service ‘instances’ are selected based on non-functional requirements (e.g., Quality of Service)

to instantiate the plans for deployment. The authors demonstrate the such a separation leads

to scalability by providing the ability to handle different goals, different data, different rates

of change of data at each planning stage, and different means to optimize them.

2.2.3 Techniques based on Model-Driven Architectures

Model-Driven Architecture (MDA) [108] is a software design approach that promotes a sys-

tematic use of “models” as primary engineering artifacts throughout the software development

lifecycle. The main objective of MDA is to separate design (i.e., the development of the model)

from the architecture. Depending on the discipline, different types of modeling languages can

be used to express information about a system that is defined by a consistent set of rules. The

rules, in essence, provide a way for interpreting the meaning of the components in a particular

model. Furthermore, depending on the approach adopted, sometimes the model is developed

with certain level of details and the executable code (corresponding to the model) is generated

separately, and sometimes the entire code is generated completely (or in-part) from the model

itself. One of the modeling languages which has become the de-facto industry standard for

MDA is Unified Modeling Language (UML) [76], which is a general-purpose language that

allows creation of abstract/concrete models of a system using a graphical notation.

Orriëns et al. [139] propose an approach for development and management of dynamic

service composition. Their main idea was to make the fundamental composition logic agnostic

to particular composition specifications (such as BPEL) in order to raise the level of abstraction.

This will in turn enable rapid development and delivery of service compositions based on proven

and test models for software-development life cycle. In particular, the authors use UML as the

modeling language and demonstrate how it can be used to steer the composition process and

www.manaraa.com

26

finally mapped to executable languages such as BPEL.

Similar [139], Grønmo et al. [87, 180] also propose an approach for Web service composition

using UML. However, an unique aspect of their approach is the ability of translating WSDL

descriptions into UML models. Consequently, existing services can be modeled within the

UML environment for building compositions, which in turn can be translated into executable

BPEL specifications. Thus, UML acts as a common integration platform. Additionally, the

authors also provide an open-source implementation of their tool.

Manolescu et al. [119] present a high-level language and methodology for designing and

deploying Web applications using Web services. In particular, the authors extend WebML

[59] to support message-exchange patterns present in WSDL and use the WebML hypertext

model for describing Web interactions and defining specific concepts in the model to represent

Web service calls. Consequently, the Web service invocation is captured by a visual language

representing the relationships between the invocations and the input/output messages.

Gannod et al. [81, 186] develop an approach for construction of OWL-S [121] specifications

using model-driven techniques. The authors propose a 2-stage approach, where in the first

stage UML is to generate an OWL-S description of a Web service by mapping UML Activity

Diagrams to OWL [17]. In the second stage, constructs are provided for mapping the concepts

in OWL-S description to concepts in the WSDL file of a concrete service for realization. Specif-

ically, the profile and process constructs of OWL-S description and a set of existing WSDL files

are used to generate the OWL-S grounding construct. This work was later extended in [187]

using Object Constraint Language (OCL) [2] for modeling structured-programming control

constructs.

2.2.4 Techniques based on Graph Theory

Graph Theory [37] is the area of study in computer science which analyzes mathematical

structures, called graphs, that are used to model pairwise relationships between objects from

a certain collection. Informally, a graph comprises of a set of vertices and a set of edges that

connect pair of vertices, such that edges may be directed or undirected. In the context of Web

www.manaraa.com

27

services, graphs have been used to model control and data flow dependencies between various

functions provided by a service.

Lang and Su [116] formalize the problem of Web service composition as an AND/OR graph

[175] search problem, where the graph essentially represents the input/output dependencies

between the service-functions. Given a request for building a composite service, the tech-

nique identifies component services that can satisfy the request and dynamically constructs an

AND/OR graph to capture the data dependencies among the Web services that can be used

to realize the composite service specification. The graph is modified based on the informa-

tion provided in the service request and the search algorithm is used to search the modified

AND/OR graph to find alternate composition templates repeatedly until the service developer

approves one. After a template is selected, the system then attempts to bind the template’s

service operations to registered services to generate a WSFL [113] specification.

Hashemian and Mavaddat [96] propose an approach for automatic Web service composition

by combining techniques based on interface automata and graph theory. In particular, the

authors model Web services using interface automata [65], which expose the inputs and outputs

of a component along with a temporal ordering of actions it performs, and represent the data

dependencies between the component services using a dependency graph, where the nodes of

the graph correspond to the inputs and outputs of the Web services and the edges represent the

associated Web services themselves. The composition comprises of two stages, where in the first

stage, suitable services are discovered that can potentially participate in the composition, and

in the next stage a dependency graph is created using the discovered services. This technique

was later extended in [97] to model composition of stateless Web services and shown using

process algebra that the composition generated is correct.

Oh et al. [138] leverage the A∗ search algorithm [175] to develop a novel technique called

BF∗ (BF-Star) for sequential composition of services. In particular, the authors introduce the

notion of “joint-matching” which represents the data dependencies required to invoke various

services, such that the invocation process corresponds to the desired conversation model of the

composite service. The technique uses an efficient data structure called bloom filter [40] to

www.manaraa.com

28

identify the data dependencies and then applies BF∗ to construct an end-to-end joint matching

of Web services.

Gekas and Fasli [82] develop a service composition registry as a hyperlinked graph network

of scalable size, and dynamically analyze its structure to derive useful heuristics to guide

the composition process. Similar to above mentioned approaches, here also the composition

process is modeled into a graph search problem where the search space, represented as a

hyperlinked graph, consists of all the potential Web service operations that can be part of a

feasible composition. In order to make the search efficient, heuristics are applied that essentially

measure the “semantic goodness” of a service in terms of how the service can provide the desired

functionality. The authors also demonstrate that their approach can scale with the increasing

size of the composition registry.

2.3 Additional Research Areas Related to Web Service Composition

In the following, we discuss existing literature in Web service substitution and adaptation,

areas that are highly relevant to service composition, and hence have become active research

topics.

2.3.1 Web Service Substitution

Given a composition model, the problem of Web service substitution concerns with ana-

lyzing whether a particular service can be replaced with another without violating the desired

requirements. A simpler way of carrying out such an analysis between the replaced and the

replacement services is to determine whether they have the exact same interface definition

(e.g., “types” of messages exchanged) or not. However, this is not often sufficient since the

interface definitions fail to capture the exact behavior (i.e., the conversation model) of the ser-

vices. Consequently, most of the existing techniques in Web service substitution have focused

substitutability based on structural and behavioral representations.

Bordeaux et al. [45] introduce three different notions of compatibility of Web services

(namely, observation indistinguishability, unspecified receptions, and deadlock freeness) and

www.manaraa.com

29

use them as basis to define context- dependent and independent substitution of Web services

(that are modeled as labeled transition systems). Two services, S1 and S2 are said to be

observation indistinguishable if both can send and receive messages simultaneously for all

possible interactions. On the other hand, if there exists at least one interaction where a

particular message sent by the sender (say S1) cannot be received by the recipient (say S2),

then S1 and S2 have unspecified receptions. And finally, if none of the interactions between S1

and S2 lead to a deadlock, then S1 and S2 are said to be deadlock-free. Based on these ideas of

service compatibility, substitution with respect to a “context” is defined, where context refers

to a particular application or a functionality. This work was later extended by Liu et al. [117]

to handle non-determinism in service behavior.

Mecella et al. [125] propose a formal model for substitutability of Web services. The

authors use state machines for representing the behavioral description of services and analyze

computational traces (i.e., the sequence of events) of services for determining substitutability.

In particular, a service S participating in a composition C can be replaced by another service

S′ if the sequence of executions of S and S′ with respect to C are equivalent (i.e., S and S′ are

trace equivalent). A typical trace would comprise of various input (output) messages received

(sent) by a service along with various atomic actions executed as a consequence of the message

interaction (with other services).

Benatallah et al. [25] introduce multiple operators for analyzing protocol compatibility and

similarity in Web services. In particular, the authors characterize two different types of protocol

compatibility, fully compatible and partially compatible, where the former corresponds to the

situation when any conversation generated by a protocol P1 can be understood by another

protocol P2, and the latter corresponds to the situation when such an understanding can

be established for at least one conversation between the protocols. Using these notions of

compatibility, analysis is done to determine whether two services exhibit the same behavior

or if one can be used instead of another when interacting with a client. Four different classes

of protocol replaceability are described (equivalence, subsumption, replaceability w.r.t. to

client protocol and replaceability w.r.t to the interaction role) and algorithms are presented

www.manaraa.com

30

for analysis corresponding to each class.

Beyer et al. [36] provide three different languages (namely, signature interfaces, consistency

interfaces and protocol interfaces) for specifying Web service interfaces, and consider subsump-

tion equivalence and subsumption ordering to ascertain replaceability of services. The interface

languages demonstrate how different aspects of a service behavior can be captured in an in-

creasingly complex manner and presented within a formal model. A signature interface simply

specifies various methods of a service that can be invoked by a client, consistency interface

specifies various propositional conditions on the method calls and output values that may re-

sult during a conversation, and finally temporal obligations on the ordering of method calls are

modeled by protocol interfaces. The authors provide algorithms for analyzing compatibility

and replaceability between signature interfaces using simple type checking, between consis-

tency interfaces by solving propositional constraints, and between protocol interfaces by model

checking temporal safety constraints.

Martens et al. [120] devise an approach for determining behavioral and syntactical com-

patibility between Web services that are modeled as petri nets. Similar to above mentioned

approaches, here also the authors adopt trace equivalence and reachability analysis to deter-

mine similarity between two petri net models. However, their approach also ensures that there

are no deadlocks between the compatible processes.

2.3.2 Web Service Adaptation

Adaptation by definition implies to “something” that is changed or changes so as to become

suitable to a new or special application or situation. In the context of Web services, adaptation

refers to two basic ideas: static adaptation and dynamic adaptation. The problem of static

adaptation is concerned with analyzing techniques that are typically applied during a service

composition process to (i) automatically build adapters to enable service mediation, and (ii)

modify the specification of the goal (or desired) service for generation of a feasible composition.

On the other hand, the problem of dynamic adaptation is concerned with developing methods

that allow the execution model of a composite service to be modulated depending on run-time

www.manaraa.com

31

conditions (e.g., Quality of Service requirements). As can be noticed, techniques developed

for both the notions of adaptation complement each other and can be applied in unison for

building robust service composition frameworks.

Harney and Doshi [94] introduce adaptation of Web services using value of changed in-

formation. Their technique relies on formulating queries for probing the status and dynamic

properties (e.g., cost) of a service that change overtime to determine whether the service should

be replaced in a particular composition. These queries are performed only after it is identi-

fied that the benefits of gathering the revised information is more than the cost involved for

querying. This work was later extended in [95] to make the querying process more efficient

by eliminating candidate services to be queried based on analysis of their information expiry

timespan.

Chafle et al. [60] propose a framework for adaptive Web service composition and execution.

Their approach was based on a staged solution that allowed adaptation by generation and

deployment of multiple workflows at different stages based on feedback mechanisms and ranking

functions. The monitoring infrastructure developed in [60] constantly monitors all the services

taking part in a composition and sends information about QoS changes and run-time failures for

appropriate adaptation. This work was also later extended in [61] by leveraging the work done

in [94] to selectively monitor the services of “interest”. The authors also provide experimental

results demonstrating the robustness and scalability of their technique.

Kwan et al. [111] devise a proxy-based approach to context-aware adaptation of services.

The main idea of this work was to leverage contextual information (e.g., memory, bandwidth)

of the clients (e.g., mobile phones, PDAs) which are executing a particular service and adapt

according to the constraints. The authors develop technique that estimate the resource usage

required to execute a service instance in a particular device, and then adapt the execution

parameters based on constraints of the executing environment. Although this work focused

mainly on execution of mobile code, it can be extended to a traditional Web-based services

setting.

Nezhad et al. [135] develop an approach for identification and resolution of mismatches

www.manaraa.com

32

between service interfaces and protocols, and for generating an adapter specification. Their

technique generates a “mismatch tree” comprising of mismatches of various types (e.g., sig-

nature, extra/missing messages) that requires inputs from the service developers for their

resolution and assists the developers in generating an adapter to resolve the incompatibilities.

Brogi and Popescu [52] also propose a similar approach to generation of BPEL adapters. How-

ever, the approach can only perform adaptation when there are no mismatches between the

service interfaces and the interactions between the services are deadlock-free.

Sinha et al. [178] develop an on-the-fly approach for adapter generation using model check-

ing where the protocols and the sequence of events between the protocols are represented

using kripke structures and temporal logic, respectively. Their work provides a tableau-based

algorithm for identifying and automatically generating an adapter (if it exists) by taking into

consideration various types of mismatches. In addition, the technique ensures that the adapter

generated for protocol communication satisfies fairness constraints, i.e., the constraints as

specified in the temporal logic representation of the desired behavior.

2.4 Discussion

One of the key aspects of Service-Oriented Architectures (SOAs) is the ability to rapidly

build new applications and services by assembling the existing ones. Developing techniques and

approaches to facilitate such an assembly process automatically has been widely researched in

both academia and industry. However, most of the existing approaches ignore or oversimplify

multiple aspects and characteristics that are specific to Web services and SOA, and are vital for

the success of service-oriented computing paradigm, in general. Some of the important aspects

include representation of functional and behavioral properties of services, ability to handle

failure of composition, service adaptation during composition, analysis of service substitution,

and handling semantic heterogeneity in service specifications. Without addressing these issues

in an uniform manner, the present techniques and tools can only operate in a restricted setting,

and hence cannot be applied to a wide-range of realistic problems and application domains.

In our research work, we aim to provide an uniform framework that is capable of addressing

www.manaraa.com

33

various problems, and in particular the aforementioned aspects, pertaining to Web services and

SOA. Similar to existing approaches, our goal is also to develop techniques and tools that allow

a service developer to model complex composite services that satisfy the desired requirements.

However, we leverage and extend the current formalisms and techniques to develop novel

algorithms and analysis methods for building an end-to-end platform to model and execute

complex Web services.

In particular, we use labeled transition systems (LTSs) to represent the functional and

behavioral properties of Web services. This choice is motivated by two main reasons: firstly,

LTSs are a simple, yet intuitive, formal model for representing communicating systems such

as Web services, and secondly, the LTS semantics are very similar to the semantics of the

existing service specification languages such as BPEL. However, we extend the conventional

notion of an LTS to represent infinite-domain variables and guards (or conditions) based on

such variables.

Based on the LTS formalism, we propose an interactive technique for composing Web ser-

vices. An important aspect of our work is the ability to determine the failure of a composition

(if any) and appropriately notify the service developer. We claim and demonstrate that such a

technique facilitates and helps the service developers in modeling complex services. However,

manual inspection of failures and taking corrective measures to achieve a feasible composition

is a time-consuming and cumbersome process, even while modeling simpler services. To ad-

dress this need, we analyze data and control flow requirements in the service specifications

and devise algorithms for automatically identifying alternate composition models that satisfy

those requirements with minimal supervision from the service developers. Furthermore, since

in many cases the component services participating in a composition process might become

unavailable, there is always a need to replace such services with alternate ones in a trans-

parent manner. A particular aspect of such replacement techniques is the ability to provide

a guarantee that none of the desired requirements of the composition are violated. We have

investigated such a technique and proposed a sound and complete approach for Web service

substitution that conforms to the composition requirements.

www.manaraa.com

34

CHAPTER 3. WEB SERVICES AND LABELED TRANSITION

SYSTEMS

This chapter provides a general framework for representing behavioral descriptions of Web

services as labeled transition systems (LTSs). The chapter is divided into three sections.

The first section introduces formalisms related to LTSs and ideas pertaining to equivalence

between LTSs and composition of multiple LTSs. The second section focuses on the mapping

and translation of existing service description and modeling languages to LTS representations.

The third section concludes the chapter with a discussion.

3.1 Representing Web Services as Labeled Transition Systems

Web services, in essence, are software systems that can be invoked by a client over a

network using standard Internet protocols to realize a desired task. Clients can take the

form of a human being or another service itself, and in practice, multiple different clients

might interact with the service simultaneously by executing multiple instances of the service

implementation. During the interaction of the client and the service, various actions of the

service will be directly executed, with the possibility of certain actions being delegated to other

services. Typically, the interaction occur by the exchange of messages between the interacting

parties. According to the W3C recommendation [98], a message exchange pattern (MEP) is a

template that establishes a pattern for the exchange of messages between two communicating

parties. A MEP identifies a common grouping of related messages. The MEPs are defined

based on the client (i.e., the service requestor) and service provider, and are named based on

message characteristics in the service provider, for the sake of clarity. The concept of MEPs

is still evolving, and the number of patterns are potentially unlimited. However, the two basic

www.manaraa.com

35

forms of MEPs that are widely used and can be applied to construct most of the other patterns

are:

• In-only (“fire & forget”): The client sends a message to the service provider and does

not expect any related message.

• In-Out (“request-response”): The client sends a message to the service provider and

expects a message.

where, the MEP names can be understood by replacing the in with request and out with

response. Thus, depending on the MEP, the client can choose the execution of some action

(by sending a message) and wait for the execution to finish and return of some information

(in the case of In-Out). Based on the outcome of the execution (and whenever possible, on

the returned information), the client might choose another action to invoke or terminate the

interaction with the service indicating that all the desired task requirements of the client have

been fulfilled by the service. The service (instance), on the other hand, after executing the

invoked action, is either ready to execute new actions or is no more in a position to accept

messages from the client, and hence execute new actions. However, in principle, a particular

service instance might have to interact with a client infinitely. In such situations, termination

of the service instance is not carried out, that is, the service is always able to accept messages

from the client and execute actions.

We claim and discuss in the remainder of this chapter that such an interaction pattern

between the client and the service representing their behavioral descriptions can be adequately

modeled using labeled transition systems. We begin the discussion with an illustrative example.

3.1.1 Labeled Transition Systems

Example 1 A client wants to search for a particular book in an online store, and if avail-

able, is willing to purchase it. Hence, it decides to interact with an available service, e-Buy,

and activates an instance of the service. The service provides two functions to the client: (i)

SearchBook for searching books, and (ii) PrchBook for purchasing books (if available). As-

suming that the client decides to search for a particular book, it invokes SearchBook by first

www.manaraa.com

36

!OutPrch("failure")

CheckQt(Quantity,ISBN;qt)

CheckQt(Quantity,ISBN;qt)

CheckCC(CCInfo;cc)

CheckCC(CCInfo;cc)

[(qt=1)/\(cc=1)]

PrchBook(ISBN,Quantity,Address,CCInfo;result)

?InPrch(Quantity,Address,CCInfo)

?InSearch(ISBN)

SearchBook(ISBN;result)

[result=0]

[(qt=0)\/(cc=0)]
!OutPrch("failure")

0

[result=0]

t

1
t

2
t

3
t

4
t

5
t

9
t

11
t

6
t

7
t

8
t

10
t

12
t

13
t

!OutSearch("failure")
[result=1]

!OutSearch("success")

[result=1]
!OutPrch("success")

Figure 3.1 Labeled Transition System representation of e-Buy service

providing the ISBN of the book as input, and then waiting for e-Buy to finish execution of the

SearchBook function. Depending on whether the requested book is available or not, a “success”

or “failure” message is sent to the client. If a “failure” message is sent, the service instance

terminates. On the other hand, if a “success” message is sent, the service offers the client

to make a purchase by providing the quantity, shipment address and credit card information.

Assuming that the client is interested in making a purchase and provides such information,

e-Buy will first check whether the desired quantity (credit card) is available (valid) or not, and

then execute the PrchBook function and send an appropriate message to the client depending

on the success or failure of the entire operation.

Figure 3.1 shows the behavioral representation of the e-Buy service using a labeled transi-

tion system, which we define as follows:

Definition 3 (Labeled Transition System [100]) A labeled transition system (LTS) is a

tuple (S,−→, s0, SF) where S is a set of states represented by terms, s0 ∈ S is the start state,

SF ⊆ S is the set of final states and −→ is the set of transition relations of the form s
γ,α
−→ t

www.manaraa.com

37

where:

1. an action α such that

(a) vars(α) ⊆ vars(s) if α is an output action

(b) vars(α) ∩ vars(s) = ∅ if α is an input action

(c) ivars(α) ⊆ vars(s) ∧ ovars(α) ∩ vars(s) = ∅ if α is an atomic action

2. a guard γ such that vars(γ) ⊆ vars(s), and

3. vars(t) ⊆ vars(s) ∪ vars(α).

where, (i) guards, denoted by γ, are predicates over other predicates and expressions; (ii)

variables in a term t are represented by a set vars(t); (iii) substitutions, denoted by σ, map

variables to expressions. A substitution of variable v to expression e is denoted by [e/v]. A

term t under the substitution σ is denoted by tσ; and finally (iv) action is a term that takes

one of the following forms:

• ?msgHeader(msgSet): input action. Variables of the input action are in msgSet, i.e.

vars(?msgHeader(msgSet)) = msgSet.

• !msgHeader(msgSet): output action. Variables of the output action are also in msgSet,

vars(!msgHeader(msgSet)) = msgSet.

• τ : an internal or unobservable action of a composition. Two entities synchronize on

input and output action with the same message header to generate such an action.

• funcName(I; O): atomic action with input parameters I and return valuation O. We say

that ivars(funcName(I;O)) = I, ovars(funcName(I;O)) = {0} and vars(funcName(I;O))

= I ∪ {0}.

In addition (similar to atomic functions), we will also refer to the variables needed in an opera-

tion as ivars and variables obtained from an operation as ovars. Therefore, ivars(?msgHeader(msgSet)) =

∅ as input operations obtain their messages from an external entity and

www.manaraa.com

38

ovars(?msgHeader(msgSet)) = msgSet as variables from input operations can be used by

the service executing the input operation. Proceeding further, ivars(!msgHeader(msgSet)) =

ovars(!msgHeader(msgSet)) = ∅ as output operation variables are generated by the service

from ovars of input operations and/or atomic functions. Finally, ivars(guard) = vars(guard)

and ovars(guard) = ∅.

For instance, Figure 3.1 shows the LTS representation of the e-Buy service described

in Example 1. Here, the transition from state t0 to t1 is annotated with an input action

?InSearch(ISBN), where InSearch is the message header and ISBN is the variable in the

input message. This action corresponds to an instance of the e-Buy service receiving an in-

put message from the client. The transition from state t1 to t2 is annotated by an atomic

action SearchBook(ISBN;result), which corresponds to a function provided by the service,

and where the argument(s) preceding “;” is(are) the input(s) to the function and the argu-

ment proceeding is the output of the function. In our case, SearchBook(ISBN;result) takes

ISBN of the book as the input, searches the repository for the book, and generates an output

result indicating whether the book is available or not. If the book is not available (denoted

by [result=0]), a failure message is sent to the client, as shown by the transition from state

t2 to t3, indicating the termination of execution of the service instance since t3 is a final state

(denoted by double circles). The output action corresponding to transmission of a message to

the client is denoted by !OutSearch(“failure”). On the other hand, if the requested book

is available (denoted by [result=1]), the execution continues further and the client can make

a purchase by providing information about shipment address and payment, and so on. The

pre-conditions such as [result=0] are guards in the LTS representation and correspond to

constraints between the variables. Note that the absence of a guard on a transition implies

that the guard is true (i.e., always enabled).

Semantics of Labeled Transition Systems. The semantics of an LTS is given with respect

to substitutions of variables present in the system. A state represented by the term s is

interpreted under substitution σ (sσ). A transition s
γ,α
−→ t, under late semantics, is said to be

enabled from sσ if γσ = tt. The transition under substitution σ is denoted by sσ
ασ
−→ tσ.

www.manaraa.com

39

Such late semantics form a natural interpretation of LTSs by capturing the substitutions

of input-variables at the destination state of a transition. For instance, consider an input

transition of the form s
?m(~x)
−→ t. From the definition of LTS, ~x ∩ vars(s) = ∅. A consequence

of late semantics is that if t contains elements in ~x, their valuations are left to be interpreted

by the guards in the subsequent transitions.

3.1.2 Equivalence of Labeled Transition Systems

Within a services computing environment, typically there exists multiple services which

provide the same functionality and have the same behavioral description. Consequently, it

might be of interest to a client to substitute an existing service S, with which it is interacting,

with an alternate service S′ depending on fulfillment of extra-functional requirements (e.g., it

might be economically viable to replace S with S′ if both provide the same functionality and

have the same conversational or interaction model, but S′ is cheaper than S to use).

To determine such “similarity” between services, we introduce two variants of equivalence

of LTSs: strong equivalence (or bisimulation) and weak equivalence (or simulation), which

identify equivalent LTSs in the presence of guarded transitions with input/output actions,

atomic actions and unobservable actions τ . We define both the variants in the following.

Definition 4 (Strong Equivalence) Given an LTS = (S,−→, s0, SF), the strong equiva-

lence (or bisimulation) relation with respect to substitution θ, denoted by ≈θ, is a subset of

S × S such that:

s1 ≈θ s2 ⇒ (∀(s1θ
α1θ
−→ t1θ) :∃(s2θ

α2θ
−→ t2θ :∀σ : (α1θσ = α2θσ) ∧ t1 ≈θσ t2) ∧ s2 ≈θ s1)

Definition 5 (Weak Equivalence) Given an LTS = (S,−→, s0, SF), the weak equivalence

(or simulation) relation with respect to substitution θ, denoted by ∼θ, is a subset of S×S such

that:

s1 ∼θ s2 ⇒ (∀(s1θ
α1θ
−→ t1θ) :∃(s2θ

α2θ
−→ t2θ :∀σ : (α1θσ = α2θσ) ∧ t1 ∼θσ t2))

www.manaraa.com

40

h
[x!=0]

g
[x=0]

f

0
p

1
p

2
p

3
p

5
p

4
p

?c(x) ?c(x)

h
[x!=0]

g

0
q

1
q

2
q

3
q

4
q

5
q

6
q

?c(x) ?c(x)

f
[x=0]

h
[x!=0] [x=0]

(a) (b)

5

e f

?c(x)

d(x;y)
[x=0] [x!=0]

h(x;y)

[x=y] [x!=y]

0
s

1
s

2
s 3

s

4
s s

3

[x=0]
h(x;y)

?c(x)

[x<0] [x>0]

0
r

1
r

2
r 4

r

h(x;y)

d(x;y)

r

(c) (d)

Figure 3.2 Example Labeled Transition Systems: (a) LTS1 (b) LTS2 (c)

LTS3 (d) LTS4

In the above definitions, s2θ
α2θ
−→ t2θ denotes transitive closure of transitions over τ transi-

tions, i.e., a transition may contain zero or more τ transitions preceding and following action

α2. Furthermore, α can be an ε or empty transition. Two states are said to be equivalent with

respect to bisimulation (simulation), under the substitution θ, if they are related by the largest

bisimilarity (similarity) relation ≈θ (∼θ). Two LTSs are said to be bisimulation (simulation)

equivalent if and only if their start states are bisimilar (similar).

For example, consider checking the bisimilarity of states p0 and q0 in the the LTSs given

in Figures 3.2(a) & 3.2(b), respectively. The state p1 is bisimilar to q1 when x = 0, and is

bisimilar to q2 when x 6= 0. Similarly, p2 is bisimilar to q1 when x 6= 0, and is bisimilar to q2

when x = 0. However, p0 and q0 are not bisimilar as the input action ?c(x) from p0 to p1, if

matched with input action ?c(x) from q0 to q1, demands that p1 and q1 are bisimilar for all

possible valuations of x (i.e., for both x = 0 and x 6= 0). On the other hand, states s0 and r0

www.manaraa.com

41

in the the LTSs given in Figures 3.2(c) & 3.2(d), respectively, are equivalent with respect to

the simulation relation, since s0 is simulated by r0 and s1 is simulated by t1 for all possible

valuations of x.

3.1.3 Composition of Labeled Transition Systems

As mentioned earlier, a client can take the form of either an human agent or another

service itself. Irrespective of the client representation, the interaction between the client and

the service takes place primarily by exchange of messages. For example, the client might send a

message to a service requesting invocation of a particular atomic action and expect to receive to

an appropriate message from the service as an outcome of the invocation. Such a conversation

model between interacting services is described using the notion of a composition, which models

the fact that both the interacting parties may evolve independently as a consequence of the

conversation process and communicate via exchange of messages.

Definition 6 (Composition) Given two labeled transition systems LTS1 = (S1,−→1, s01, S
F
1)

and LTS2 = (S2,−→2, s02, S
F
2), their composition, under the restriction set L, is denoted

by (LTS1 || LTS2)\L = (S12,−→12, s012, S
F
12) where S12 ⊆ S1 × S2, s012 = (s01, s02),

SF
12 = {(s1, s2) | s1 ∈ SF

1 ∧ s2 ∈ SF
2 } and −→12 relation is of the form:

1. s
g1,?m(~x)
−→ s′∧ t

g2,!m(~x)
−→ t′∧ m ∈ L ⇒ (s, t)

g1∧g2,τ
−→ (s′, t′),

2. s
g1,α
−→ s′ ∧ header(α) 6∈ L ⇒ (s, t)

g1,α
−→ (s′, t), and

3. t
g2,α
−→ t′ ∧ header(α) 6∈ L ⇒ (s, t)

g2,α
−→ (s, t′).

In the above, restriction set L includes the message headers on which the participating LTSs

must synchronize and generate a τ action. We use header(α) to return the message header of

input and output actions; for atomic actions and τ -actions it returns a constant which is never

present in L.

For example, Figure 3.3(c) shows the composition LTSc of LTS5 and LTS6 (Figures 3.3(a)

and 3.3(b), respectively), where L = {x, y}. On the other hand, if L is null, i.e., the restriction

www.manaraa.com

42

?y!x

0
t

1
t

!y?x

0
s

1
s

0
t

?y,!y

1

?x,!x

t
1
s

0
s

?x

?x

!y

?y

!x

?y

!y

?x,?y

!y,!x

!y,?y

?x,!x

1

!x

t
1
s

0
t

1
s

1
t

0
s

0
t

0
s

(a) (b) (c) (d)

Figure 3.3 Composition of Labeled Transition Systems: (a) LTS5 (b)

LTS6 (c) LTSc (d) LTSc′

set is empty, then the composition LTS5 and LTS6 can be represented by LTSc′ as shown in

Figure 3.3(d).

We discuss more on composition of LTSs in Chapter 4.

3.2 Transforming Web Service Descriptions to Labeled Transition Systems

Labeled Transition Systems, even though are adequate enough to represent the behavioral

description of Web services, are not widely used in the services computing domain because

modeling LTSs for complex Web services is a time consuming, cumbersome and error-prone

process. Furthermore, the tool support for developing LTS descriptions is inadequate. Conse-

quently, in our framework we allow service developers to model services using state machines

[64] and Business Process Execution Language (BPEL) [16], which are widely used service

development languages with robust open-source and commercial tooling support. The service

descriptions modeled in these languages can be mapped to LTS representations (Sections 3.2.1

& 3.2.1) and are automatically automatically translated by our system (see Chapter 8 for more

details).

www.manaraa.com

43

?InPrch(Quantity,Address,CCInfo)

0

S1

S8

S4

S6

S5

S7

S11 S12

S9

S10

S2

S3

[result=0]

e−Buy

SearchBook(ISBN)
/result

?InSearch(ISBN)

!OutSearch("success")
[result=1]

CheckOut

CheckQt(Quantity,ISBN)
/qt

/cc
CheckCC(CCInfo)

[(qt=1)/\(cc=1)]
[(qt=0)\/(cc=0)]

Purchase(ISBN,Quantity,Address,CCInfo)
/result

!OutPrch("failure")

!OutPrch("failure")

[result=0] [result=1]
!OutPrch("success")

!OutSearch("failure")

S

Figure 3.4 State Machine representation of the e-Buy service

3.2.1 Mapping State Machines to Labeled Transition Systems

A state machine [64] is a model of behavior composed of a set of states (s1, s2, · · ·) rep-

resenting an abstraction of the system configuration, and inter-state transitions (s1 −→ s2)

denoting the conditions under which the system evolves from one state to the next. The states

can be either composite (or-/and- states) or atomic. A composite state is an “or-state” if there

exists multiple transitions originating from the state such that any one of these transitions can

be executed; whereas the composite is an “and-state” if all the transitions can be executed

simultaneously.

Each transition, source
ev[g]/e
−→ destination, is annotated with action labels consisting of

an event (ev), guard (g), and effect (e). In the context of Web services, the events corre-

spond to various functions (i.e., atomic actions) that a service provides; the guards refer to

pre-conditions of those functions; and effects correspond to post-conditions of the transition-

functions, in essence denoting the possible assignment of values to variables after the function

is executed. A true guard and ε (empty) effect denote the absence of pre-/post-conditions,

respectively. For example, Figure 3.4 shows the state machine representation of the e-Buy

www.manaraa.com

44

service described in Example 1. Here, for the transition s1 → s2, the event corresponds to the

function SearchBook(ISBN), the guard is assumed to be true, and the effect refers to assigning

some value to the variable result. We assume that the control flow of the service represented

in a state machine is dependent entirely on the guards augmenting the corresponding transi-

tions. That is, if there exists multiple transitions originating from a particular state, then the

branching behavior is based on how the guards are analyzed. For instance, in Figure 3.4, there

are two transitions originating from state s2 namely, s2
[result=0]
−→ s8 and s2

[result=1]
−→ s3. Thus,

the transition from state s2 to s8 is executed only when [result = 0], whereas the transition

from s2 to s3 is executed when [result = 1]. Furthermore, we assume that if there is no cor-

relation between the order in which the events (or functions) are executed (i.e., the functions

can be invoked in parallel since there is no dependency between them), they are represented

using “and-composite” states in the state machine model.

In our context, a state machine representation can be translated to its corresponding LTS

form as follows: (a) an LTS-state corresponding to an “and-state” is determined by all the

active atomic states, (b) an LTS-state for an “or-state” corresponds to one of the possible active

states, (c) states outside the scope of any “and-/or-composition” are also states in the LTS, and

finally, (d) initial and end states along with their transitive closures over event-free transitions

are start and final states, respectively, of the LTS. Figure 3.1 shows the LTS representation of

the e-Buy state machine shown in Figure 3.4.

3.2.2 Mapping BPEL to Labeled Transition Systems

We introduced Business Process Execution Language (BPEL) in Section 2.1. It is one of

the most widely used languages for modeling Web services and their compositions since it offers

an uniform semantics for creation of complex processes by integrating different activities that

can, for example, perform service invocations, process data, throw exceptions, or terminate

execution. These activities may be nested within structured activities that define how they

may be run, such as in sequence, or in parallel, or depending on certain conditions.

Central to the theme of BPEL is a process which is used to model the behavioral description

www.manaraa.com

45

of a composition of a set of services or even a single service. The process either receives (sends)

messages from (to) various interacting entities, which are called partners. Thus, a partner is

either a service the process invokes (invoked partners) as an integral part of its algorithm, or

those that invoke the process (client partners). As obvious, when modeling a composition, the

process is going to interact and invoke multiple partners. For the sake of simplicity, in the

remaining discussion, we will only consider BPEL processes that interact with two partners: a

client partner and an invoked partner.

In an abstract sense, a BPEL process is a flow-chart representation of an algorithm. Each

step in the process is called an activity. Some of the basic activities in BPEL include:

• <receive>: this activity corresponds to reception from a service due to an invocation

(and subsequent execution) of an operation in its interface.

• <reply>: this activity corresponds to generation of a response due to invocation of an

input-output operation in the service interface.

• <invoke>: this activity corresponds to invoking an operation in the service interface.

• <wait>: this activity corresponds to waiting period for a fixed amount of time.

• <assign>: this activity corresponds to copying data from one place (or variable, or

message) to another.

• <throw>: this activity indicates the occurrence of a problem.

• <terminate>: this activity corresponds to terminating a service instance.

• <empty>: this activity corresponds to doing nothing.

These primitive activities can be combined to form more complex ones akin to constructs in

structured-programming. Some examples include the ability to define an ordered sequence

of steps (<sequence>), the ability to have branches using “case-statements” (<switch>),

the ability to define a loop (<while>), the ability to execute one of several alternative paths

(<pick>), and finally the ability to indicate that a collection of steps should be executed in

www.manaraa.com

46

check(sellerSendData;sellerReplyData)

0

!reply1(Output)

t

1
t

2
t

3
t

?receive1(Input)

Figure 3.5 Labeled Transition System representation of e-Auction service

parallel (<flow>). In addition to above, BPEL provides a range of complex activities for

message correlation, fault handling, and compensation. For our purpose, we will only consider

some of the primitive activities along with their complex variants.

As an example, consider a simple service named e-Auctionwhich allows clients to query for

the price of an item that has been put on auction. The BPEL process describing the behavioral

model and the WSDL file describing the interface of e-Auction are shown in Appendices A

and B, respectively. The BPEL process essentially says that the execution of an instance of

e-Auction service is (i) able to receive a message from an external client containing the name

of the item whose price the client is interested in knowing, (ii) upon reception of the message,

the data (i.e., item name) from the message is assigned/copied to another (local) message, (iii)

this (local) message is used to invoke the check operation of the e-Auction service for checking

the price, (iv) the output information (containing the price of the item) provided by check is

then assigned to another (local) message, (v) which is finally sent back to the client as a reply.

The corresponding LTS representation of this BPEL process model is shown in Figure 3.5. As

can be noticed, the <receive> and <reply> activities in the BPEL process correspond to

input (?receive1(Input)) and output (!reply1(Output)) actions in the LTS, respectively. The

<assign> activity corresponds to assigning the variables and their values from the transition

label to the destination state of the transition (not shown in Figure 3.5). And finally, the

<invoke> activity corresponds to the atomic action check(sellerSendData;sellerReplyData) in

the LTS representation. All these activities in the BPEL are part of the <sequence> activity.

www.manaraa.com

47

We have developed a tool which does this translation from BPEL files to their corresponding

LTS representation. Refer to Chapter 8 for more details.

3.3 Discussion

In this chapter, we have presented a general framework for formally representing the be-

havioral model of a service. In particular, we used labeled transition systems (LTSs) for the

behavioral representation which comprises of a finite number states and transitions between

the states that are annotated with actions or guards (i.e., the pre-conditions on the actions).

LTSs have been used and researched widely in various communities such as software engi-

neering, distributed systems and networks, and are adequate to model Web services behavior

since they (i) provide a natural way to represent message exchange patterns in terms of input

and output actions, (ii) provide an abstract representation of a concrete service realization,

and (iii) possess well-defined formal semantics. We also introduced two key ideas, that are in

particular relevant to this thesis, namely, determining equivalence between LTSs and compo-

sition of multiple LTSs. Equivalence of LTSs is particularly important in a highly dynamic

service-computing environment because existing services can become unavailable/obsolete or

newer services might become available quite frequently, thereby requiring the client the replace

an existing service with another “functionally-equivalent” service. On the other hand, compo-

sition of LTSs is also a vital problem since in many cases the desired functionality cannot be

provided by a single service, but possibly by integrating multiple services in a suitable way.

We discuss more on composition and equivalence of LTSs in Chapters 4 and 6, respectively.

In addition to the above, we introduced techniques and developed tools for mapping existing

service description and modeling languages to the LTS representation. In particular, we ad-

dressed translation of graphical languages such as state machines and XML-based languages

such as BPEL to LTSs. This will in turn pave the way for using existing services specified in

those languages in our framework (see Chapter 8).

However, there are a few limitations of our approach. For instance, when translating BPEL

specifications to LTS representations, we consider only the primitive and few complex activ-

www.manaraa.com

48

ities. Our current implementation cannot handle, for example, correlation between messages

or compensation to failures—aspects that are important and relevant in service modeling.

Similarly, one can argue that translation of state machines to LTSs is too limited in terms

of handling complex structure-programming constructs such as exception or failure handling.

Although a part of this criticism can be attributed to the semantics of state machines (i.e.,

state machines formally do not have notion of “exception handling”), we believe that further

research is required for realizing important benefits of model-driven architectures in service

oriented computing environments. Furthermore, in the current setting, we represented the be-

havioral model of Web services using LTSs, which are discrete-event systems. In other words,

every event, whether receiving a message or invoking an atomic action, occurs at a discrete

time step. However, in many cases, the actions present in a service may be related by contin-

uous temporal intervals (e.g, execution of action a occurred during action b), which cannot be

represented by LTS. Towards this end, investigation of temporal algebra-based representations

[9] and their applicability within our setting is needed.

www.manaraa.com

49

CHAPTER 4. WEB SERVICE COMPOSITION

This chapter introduces the problem of Web service composition and describes in details

our approach to address the problem. The chapter is divided into four sections. The first

section provides background to and describes the problem of Web service composition. An

illustrative example is described in the second section to explain the salient features of our

proposal, which is discussed in the third section. The fourth section concludes the chapter

with a discussion.

4.1 Introduction and Problem Description

Recent advances in networks, information and computation grids, and WWW have resulted

in the proliferation of physically distributed and autonomously developed software components

and services. These developments allow us to rapidly build new value-added applications from

existing ones in various domains such as e-Science, e-Business, and e-Government. However,

often the process of integrating applications becomes tedious and time consuming because

individual software entities are not developed using standard frameworks or component mod-

els. This results in significant re-designing and re-coupling of existing software leading to

substantial loss in productivity.

In this context, developing approaches for (semi-) automatic composition of Web services

has emerged as an active area of research in both academia and industry. As introduced earlier

in Section 1.2.2, there are two basic ways of modeling composite services: orchestration-based

(Figure 1.4(a)), wherein message exchanges between the services participating in a composition

is observed from a single point-of-view, and choreography-based (Figure 1.4(b)), wherein the

message exchanges are observed from a global perspective. Many recent efforts (see Chapter

www.manaraa.com

50

2 for a brief literature review and [67, 103, 128, 137, 170, 184] for surveys), that leverage tech-

niques based on AI planning, logic programming, and formal methods have focused on different

aspects of Web service composition ranging from service discovery to service specification and

deployment of composite services. However, despite the progress, the current state of the art

in service composition has several limitations:

• Complexity of Modeling Composite Services: For specifying functional requirements, the

current techniques for service composition require the service developer to provide a

specification of the desired behavior of the composite service (goal) in its entirety. Con-

sequently, the developer has to deal with the cognitive burden of handling the entire

composition graph (comprising appropriate data and control flows) which becomes hard

to manage with the increasing complexity of the goal service. Instead, it will be more

practical to allow developers to begin with an abstract, and possibly incomplete, speci-

fication that can be incrementally modified and updated until a feasible composition is

realized.

• Inability to Analyze Failure of Composition: The existing techniques for service compo-

sition adopt a ‘single-step request-response’ paradigm for modeling composite services.

That is, if the goal specification provided by the service developer cannot be realized by

the composition analyzer (using the set of available component services), the entire pro-

cess fails. As opposed to this, there is a requirement for developing approaches that will

help identify the cause(s) for failure of composition and guide the developer in applying

that information for appropriate reformulation of the goal specification in an iterative

manner. This requirement is of particular importance in light of the previous limita-

tion because in many cases the failure to realize a goal service using a set of component

services can be attributed to incompleteness of the goal specification.

• Inability to Analyze Infinite-State Behavior of Services: Often, Web services have to

cope with apriori unknown and potentially unbounded data domains (e.g., data types

defined by users in WSDL documents). Analyzing the behavior of such a service requires

www.manaraa.com

51

consideration of all possible valuations, which makes the resulting system infinite-state.

However, most of the service composition approaches do not take into account the infinite-

state behavior exhibited by Web services.

• Lack of Formal Guarantees: Formally guaranteeing the soundness and completeness of

an algorithm for service composition is a vital requirement for ensuring the correctness

of the composite service (generated by the algorithm). In this context, we say that

an algorithm is complete if it is able to find a feasible composition whenever it exists,

whereas the algorithm is sound if ascertains that the composition generated realizes the

goal service. Nevertheless, most of the existing service composition techniques do not

provide soundness and completeness guarantees.

Against this background, we propose MoSCoE 1 [146, 148, 149, 152, 153, 154, 155]—an

approach for developing composite services in an incremental fashion through iterative refor-

mulation of the functional specification of the goal service. MoSCoE accepts from the user

(i.e., service developer), an abstract (high-level and possibly incomplete) specification of a goal

service. In our current implementation, the goal service specification takes the form of a la-

beled transition systems (LTS) (Definition 3) that provide a formal, yet intuitive specification

of the desired goal functionality. Similarly, the component services (i.e., available services) are

also represented as LTSs. As mentioned in Section 3.2, the LTS representation of the services

can be obtained either from the corresponding state machine or BPEL process description.

Thus, given the goal service and component service specifications as input, the objective is to

compose a subset of the available component services (c1, c2 · · · cn) with the corresponding LTS

representations (LTS1, · · · , LTSn), such that the resultant composition “realizes” the desired

goal service LTSg. As noted above, this process might fail either because the desired service

cannot be realized using the available component services or because the specification of the

goal service is incomplete. A novel feature of MoSCoE is its ability to identify, in the event

of failure to realize a goal service arising from an incomplete goal specification, the specific

1MoSCoE stands for Modeling Web Service Composition and Execution. More information is available at:
http://www.moscoe.org.

http://www.moscoe.org

www.manaraa.com

52

states and transitions in the LTS description of the goal service that require modification. This

information allows the developer to reformulate the goal specification, and the procedure2 can

be repeated until a feasible composition is realized or the developer decides to abort. We refer

to this approach as modeling Web services using abstraction, composition and reformulation

and explain its salient aspects in details in the remainder of this chapter. We begin with the

description of an illustrative example.

4.2 Illustrative Example

Assume that a service developer is assigned to model a new Web service, Health4U, which

allows senior citizens to make a doctor’s appointment to receive medical attention for a partic-

ular ailment. To achieve this, Health4U relies on five existing (possibly independent) services:

Appointment, MedInsurance, MedRecord, e-Ride and Validate. Appointment accepts pa-

tient data (name, ailment s/he is suffering from) and scheduling information (preferred date

and time) as input to make an appointment. Appointment takes into account: (a) information

about patient’s insurance coverage plan to identify the designated physicians from whom the

patient can receive treatment, and (b) the medical history (if any) that provides information

about patient’s previous appointments for the particular ailment. To obtain the needed infor-

mation, Appointment communicates with MedInsurance (case (a)) and MedRecord (case (b)),

both of which require the patient’s SSN (Social Security Number). Appointment attempts to

schedule an appointment for the patient with a physician who has treated the patient in the

past. If no such physician is available, it makes an appointment with a physician who is among

those designated by the insurance provider. Furthermore, Health4U arranges transportation

for the patient to the medical center via the e-Ride service. This service needs the date and

time for pick-up, as well as the patient’s address. In addition, e-Ride communicates with

Validate to determine whether the patient has provided a valid payment information (e.g.,

credit card) before completing the reservation.

We discuss in the next section how the composition of a service like Health4U can be

2Note that determination of the cause for failure of composition, and use of that information for reformulation
of the goal specification is carried out at design-time as opposed to run-time.

www.manaraa.com

53

!app("fail")
[avail=0]

InsRide(SSN;elig)

PrevRec(SSN;pre)

AppPhy(elig,pre;phy)

[phy=1]
?getRideInfo(date,time,addr)

[phy=0]
!app("fail")

BookRide(date,time,addr)

?getCCInfo(CCInfo)

Reserve(confirm)

[confirm=0] [confirm=1]
!app("fail")

0

!app("success")

s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9
s

10
s

11
s

12
s

13
s

14
s

?makeApp(date,time,ailment)

SearchPhy(date,time,ailment;avail)

[avail=1]
?getSSN(SSN)

[avail=1][avail=0]
!app("fail")

!inRec(SSN)

?outRec(rec)

!inIns(SSN)

?outIns(elig)

!inPhy(avail,elig,pre)

?outPhy(phy)

[phy=1]
?getRideInfo(date,time,addr)!app("fail")

[phy=0]

!inRide(date,time,addr)

?getCCInfo(CCInfo)

!inCCInfo(CCInfo)

!outCCValid(valid)

?inCCValid(valid)

?outReserve(confirm)

[confirm=0] [confirm=1]
!app("fail")

0

!app("success")

c

1
c

4
c

5
c

13
c12

c

2
c

3
c

6
c

7
c

8
c

9
c

10
c

11
c

14
c

15
c

16
c

17
c

18
c

19
c

20
c

21
c

?makeApp(date,time,ailment)

!inSearch(date,time,ailment)

?outSearch(avail)

?getSSN(SSN)

(a) (b)

Figure 4.1 LTS representation of (a) Health4U (b) The Mediator

www.manaraa.com

54

!outPhy(phy)

AppPhy(avail,elig,pre;phy)

?inPhy(avail,elig;pre)

!outSearch(valid)

SearchPhy(date,time,

0

 ailment;avail)

t

1
t

2
t

4
t

5
t

6
t

7
t

?inSearch(date,time,ailment)

!outRec(pre)

8

?inRec(SSN)

t

9
t

10
t

11
t

PrevRec(SSN;pre) InsInfo(SSN;elig)

12

!outIns(elig)

t

13
t

14
t

15
t

?inIns(SSN)

(a) (b) (c)

BookRide(date,time,addr)

?inCCValid(valid)

Reserve(confirm)

16

!outRide(confirm)

t

17
t

18
t

19
t

20
t

21
t

?inRide(date,time,addr)

ValidateCC(CCInfo;valid)

22

!outCCValid(valid)

t

23
t

25
t

24
t

?inCCInfo(CCInfo)

(d) (e)

Figure 4.2 LTS representation of (a) Appointment (b) MedRecord (c)

MedInsurance (d) e-Ride (e) Validate component services

accomplished by MoSCoE, which adopts the orchestrator -based model for composition. In

particular, MoSCoE receives from the service developer an LTS specification of the desired

goal service Health4U, as shown in Figure 4.1(a), which is used to construct a mediator that

enables the interaction between (a subset of) the component services to provide the desired goal

service functionality. Figure 4.1(b) shows a mediator that realizes Health4U using component

services shown in Figure 4.2.

www.manaraa.com

55

4.3 Our Approach

4.3.1 Service Composition in MoSCoE: An Overview

Given a goal service Tg and a set of available component services T1, T2, . . . , Tn, solving

the service composition problem entails identifying a composition of the necessary component

services that realizes the functionality of Tg. In the setting of orchestration-based composition

(Figure 1.4(a)), this entails generating a mediator TM which realizes the functionality of Tg

by orchestrating the necessary interactions among the selected component services. As noted

earlier, the mediator TM replicates the behavior of the input/output actions of the goal service

and is responsible for communications between component services; it relies on the component

services for atomic actions needed to realize the goal service. In MoSCoE, the operation of the

goal service as well as the component services are represented by the corresponding LTSs.

Based on the definition of composition and equivalence on LTSs described in Section 3.1,

and the previously introduced notion of a mediator, the service composition problem can be

described as:

∃TM : (. . . ((TM ||Ti)||Tj)|| . . . ||Tk)\L ≈tt Tg

where, L contains all the input and output message headers of the component services. Thus,

solving the service composition problem entails to constructing a mediator which can enable

interaction between the component services so as to yield a behavior that is strong equivalent

(bisimilar) to that of the desired goal service.

4.3.2 Algorithm for Mediator Synthesis

We now proceed to describe an algorithm for constructing a mediator for a desired service

from a set of component services. Since the goal service specification includes the descriptions

of the desired functions, we select the subset of component services whose LTSs provide the

necessary atomic actions to yield a set of candidate component services which the mediator

can work with.

Because the task of a mediator is to orchestrate the interactions among component services,

www.manaraa.com

56

the algorithm for constructing the mediator requires information regarding dependencies be-

tween components, i.e., the dependency of an input message of a component on the output of

another. For example, if a component Ti requires an input of the form ?m(~x) and a component

Tj provides an output of the form !m(~x), we say that Ti is dependent on Tj via the message

header m. In such a setting, the mediator needs to synchronize with the output message from

Tj and pass on the output of Tj as an input message to Ti. To make this notion of dependency

more precise, we define flow links which capture the dependencies between multiple component

services.

Definition 7 (Flow Links) For services Ti and Tj , if ?m(~x) and !m(~x) are present in the

specifications of the respective components STSi and STSj , then m is said to be a member of the

flow link (from j to i component) set denoted by FLij .

For example, consider the component services e-Ride (Figure 4.2(d)) and Validate (Figure

4.2(e)). In order for e-Ride to reserve a ride, it needs valid payment information. This

information is provided by Validate after it validates the credit card information provided by

the patient. Hence, there exists a flow link from Validate to e-Ride.

The algorithm for modeling a mediator (Algorithm 1) that is “equivalent” to the goal service

works as follows: the procedure generate(r, [s1, s2, . . . , sn], t,G,R) is invoked by providing

the start states of the goal LTS (r), the component LTSs in S (s1, s2, . . . , sn), and the mediator

LTS (t) that is being modeled. The initial guard condition G is set to true and R corresponds

to a store that contains all the input and output message headers of the component services,

which is initially empty. A global set done is used to keep track of whether a particular atomic

action requested by the goal service is realized in the composition. There are four cases to

consider:

Case 1: If the transition from the current state r in the goal LTS to state r′ has an input

action, i.e., receiving a message from the client, then a corresponding transition with the input

action is created in the mediator (line 8) and R is updated with the msgSet of the input

action (line 9). The procedure generate is recursively invoked in line 10.

www.manaraa.com

57

/*
- r is the goal state; si is the component state; t is the generated mediator state.
- G is the conjunction of guard conditions that will be accumulated along each DFS path. All variables in G are
universally quantified.

- R is a store that contains all the input & output message headers of the component services.
*/

1: procedure generate(r, [s1, s2, . . . , sn], t, G, R)
2: if (!visited(r, [s1, s2, . . . , sn], t, G, R)) then // Traverse path for the first time.

3: mark as visited(r, [s1, s2, . . . , sn], t, G, R);
4: end if

5: for all ((r
g,a
−→ r′) && (G ∧ g)) do

6: case 1: /* input action from the client */

7: if (a = ?m(~x)) then

8: create a transition t
g,a
−→ t′;

9: R := R ∪ ~x;
10: call generate(r′, [s1, s2, . . . , sn], t′, G ∧ g, R ∪ ~x);
11: end if

12: end case

13: case 2: /* output to the client */

14: if (a = !m(~x)) then

15: if (~x ∈ R) then

16: create a transition t
g,a
−→ t′;

17: call generate(r′, [s1, s2, . . . , sn], t′, G ∧ g, R);

18: else Requested output cannot be created for client. Return partial mediator.

19: end if

20: end if

21: end case

22: case 3: /* atomic action to be provided by the components */

23: if ((a = funcName(I; O)) && (no si has a transition on the action a)) then

24: select the component Ti that is capable of generating the function;
25: end if

26: if ((si
gi,?m(~x)
−→ s′i) && (~x 6∈ R)) then

27: if (m ∈ FLij) then

28: msgH:=m; k := j;

29: else Return partial mediator. Failure at action a.

30: end if

31: while ((sk
gk,ak−→ s′k) && header(ak) 6= msgH) do

32: if ((ak = ?mk(~y)) && (~y 6∈ R)) then

33: if (mk ∈ FLkl) then

34: msgH := mk; k := l;
35: end if

36: else if (((ak = ?mk(~y)) && (~y ∈ R)) || (ak = !mk(~y))) then

37: if (G ⇒ gk) then

38: create transition t
G,ak−→ t′ to communicate with sk;

39: call generate(r, [s1, s2, . . . , s′k, . . . , sn], t′, G, R ∪ ~y);
40: if (t′ is the root of a partial mediator) then

41: select next transition from sk;
42: else

43: break;
44: end if

45: end if

46: else

47: Return partial mediator. Failure at action a. ;

48: break;
49: end if

50: end while

Algorithm 1 Algorithm for Modeling the Mediator & Failure-Cause Detection

www.manaraa.com

58

51: if ((sk
gk,ak−→ s′k) && (header(ak) = msgH)) then

52: if (G ⇒ gk) then

53: create transition t
G,ak−→ t′ to communicate with sk;

54: call generate(r, [s1, s2, . . . , s′k, . . . , sn], t′, G, R ∪ vars(ak));
55: else

56: Return partial mediator. Failure at action a. ;

57: end if

58: else if ((sk 6∈ SF
k) || (funcName(I;O) 6∈ done)) then

59: Return partial mediator. Failure at action a. ;

60: elsereturn;
61: end if

62: else if ((si
gi,?m(~x)
−→ s′i) && (~x ∈ R) && (G ⇒ gi)) then

63: create transition t
G,!m(~x)
−→ t′ to communicate with si;

64: call generate(r, [s1, s2, . . . , s′i, . . . , sn], t′, G, R);

65: else if ((si
gi,!m(~x)
−→ s′i) && (G ⇒ gi)) then

66: create transition t
G,?m(~x)
−→ t′ to communicate with si;

67: call generate(r, [s1, s2, . . . , s′i, . . . , sn], t′, G, R ∪ ~x);
68: else

69: Return partial mediator. Failure at action a. ;

70: end if

71: end case

72: case 4: /* atomic action to be provided by the components */

73: if (a = funcName(I; O)) && (si has a transition on action a)) then

74: if ((si
gi,a
−→ s′i) && (G ∧ g ⇒ gi)) then

75: done = done ∪ funcName(I;O);
76: call generate(r′, [s1, s2, . . . , s′i, . . . , sn], t, G ∧ g, R ∪ ovars(a));

77: else Return partial mediator with failure at guarded action (g,a).

78: end if

79: end if

80: end case

81: end for

82: end procedure

www.manaraa.com

59

Case 2: If the transition from the current state r in the goal LTS to state r′ has an output

action, i.e., transmitting a message to the client, then a corresponding transition with the

output action is created in the mediator if the msgSet of the action is already present in R

(line 16). Note that here the msgSet required to produce the output message can be only

retrieved from R (assuming it was placed there as a result of preceding interactions between

the component services). The procedure generate is recursively invoked in line 17.

Case 3: This case corresponds to a situation in which the transition action in the goal is an

atomic action a and none of the component services can provide a transition on that action

from their current states si. In such a scenario, the algorithm first selects a component service

Ti which can provide the required function a (line 24)3. Now there are three scenarios: si

has an input action for which the mediator cannot provide input messages (line 26); si has

an input action for which the mediator can provide input messages (line 62); and si has an

output action (line 65).

The last two of the preceding three scenarios are easily dealt with: the mediator transitions

are generated to provide appropriate output or input message as the case may be and the

procedure generate is invoked recursively. Thus, in the last case, i.e., line 65, the store

R is updated to include the output messages from the state si. The first scenario (line 26)

is more involved. As the msgSet required at the input action from state si is not present in

R (line 26), the flow links (Definition 7) are explored to determine a component Tj which

can provide the message as output. However, it is possible that Tj , in turn, is at a state sj

which needs a different input or output message. If the message is on input action provided

by the mediator or if the message in on output action, then appropriate mediator transition is

created and generate is invoked recursively (lines 36--45). At line 38, ak denotes the

complement of ak, i.e. ak :=!mk(~y) if ak =?mk(~y); otherwise ak :=?mk(~y). In this case, after the

recursive call to generate, a new transition from sk is selected at the while-condition (line

31). If the input message at sj cannot be provided by the mediator another component via

3In practice, there might be more than one component service that can provide the required atomic action
a, in which case, each choice is explored to find a feasible mediator.

www.manaraa.com

60

flow link is selected and the process is iterated (lines 31--34).

Outside the while loop, if there exists a component which has the output action at its cur-

rent state (sk in Figure at line 51) required by the input action at state si of Ti responsible

for providing the atomic action (lines 24--30), then the mediator transition communicating

with this component (line 53) is generated. Finally, at line 58--60, if the state sk is not a

final state or the global store done does not include funcName(I;O), i.e., there exists a tran-

sition with atomic action from sk (fall-through case from lines 31, 51) or funcName(I;O)

requirement is not provided along any of the paths by recursion, then failure is reported;

otherwise the procedure returns with no error.

Case 4: Finally, this case considers a situation when the transition action in the goal is

an atomic action a and there exists a component Ti which has a transition from its current

state si on action a (line 72--80). The message store R is updated with the return values

of the function and global store done is updated to reflect that funcName(I;O) invocation

requirement is realized.

We use a constraint solver to check the (un)-satisfiability of guards on LTS transitions.

All the variables in the guard are universally quantified. At present, MoSCoE works with

only equality and disequality constraints on infinite domain variables for which satisfiability

checking of guards is decidable [23], although we plan to investigate a of larger classes of

infinite state systems for which the construction of mediator can be made decidable [109]. The

preceding algorithm may fail to construct a mediator because of either due to the absence of

an action that is necessary to achieve the goal service functionality or the unsatisfiability of

guards. Analysis of the cause of such failure is discussed in Section 4.3.3.

4.3.2.1 Modeling a Mediator for Health4U

In what follows, we show how to model a mediator for the Health4U composite service

introduced in Section 4.2 using the formal framework and algorithm described above. Figure

4.1(a) shows an LTS representation of the Health4U goal service and Figure 4.2 shows the

corresponding LTSs of a set of available services. Given the goal service specification and a

www.manaraa.com

61

set of available component services, MoSCoE’s task is to construct a mediator (Figure 4.1(b)),

which enables the interaction between the client and component services, and is “bisimulation

equivalent” to the goal service.

The algorithm begins with the start state s0 of the goal LTS and considers its transition to

state s1. Here, the transition takes place due to an input action ?makeApp(. . .) from the client

(Case 1), so MoSCoE creates an appropriate transition (c0 −→ c1) in the mediator to receive

the input message. For the transition s1 −→ s2 in the goal STS, the associated transition label

is an atomic action (SearchPhy(. . .)). However, since none of the current component states

(t0, t8, t12, t16, t22) can make a transition on this action (Case 3), the algorithm first selects the

component Appointment because it can provide the requested function, and then creates an

appropriate transition in the mediator to send a message to Appointment. Once Appointment

executes the function SearchPhy(. . .), it transmits an output message (in this case, indicating

the availability of physician(s) for treatment of the ailment on the requested date and time),

which is received by the mediator. This behavior is modeled by the mediator by the transition

c2 −→ c3 (Case 1). Depending on whether a physician is available or not, the algorithm creates

transitions c3 −→ c4 and c3 −→ c5 to send/receive output/input message to/from the client

(Cases 2 & 1), respectively. The algorithm proceeds in a similar fashion to model transitions

for atomic actions InsInfo(. . .) and PrevRec(. . .), and reach the goal state s6 and mediator

state c9. Now, to model a corresponding transition for the atomic action AppPhy(. . .), the

mediator refers to the message store R for previous message exchanges between the client

and component services, and generates an output message !inPhy(avail,elig,pre). Note

that the values for the variables (avail, elig, & pre) in the message were placed in R as a

result of previous message exchanges between the mediator and component services. Since R

contains every message that the mediator receives from the client and the component services,

to select the relevant components (and their messages), the mediator exploits the flow links

(Definition 7) between the components, as illustrated in Case 3 of the algorithm. This process

for constructing the mediator terminates with success when for each transition leading to a

final state in the goal, a corresponding transition in the mediator is established.

www.manaraa.com

62

Now we proceed to discuss the scenario in which the algorithm for constructing the mediator

fails.

4.3.3 Analysis of Failure of Composition

Algorithm 1 for constructing a mediator that realizes a specified goal service using the

available component services fails when some aspect of the goal specification cannot be realized

using the available component services. In the event of such failure, MoSCoE seeks to provide

to the user (i.e., the service developer) information about the cause(s) of the failure in a form

that can be used to reformulate the goal specification. Recall that mediator construction fails

when there exists no mediator that can enable the interaction among the available components

to realize a behavior that is “bisimulation equivalent” to that of the goal service. In particular,

bisimulation equivalence is not satisfied when:

1. The mediator composed with components fails to create the transition relation (see

bisimulation in Definition 4). These transitions are generated by transitive closure of

τ -transitions obtained via synchronization between mediator and components.

2. The actions between the goal and component transitions do not match.

3. The guard conditions are unsatisfiable.

Returning to the mediator construction algorithm (Algorithm 1), we note that failures might

be encountered during different stages of execution of the algorithm. For instance, line 18

might result in a failure cause corresponding to Case 1 because the messages required for

generating the output message to the client are not present in R. Similarly, in lines 29 and

47 the failures might arise because either the input message required by a component services

cannot be provided by some other component service or by the client itself. In line 56, 77,

failure might occur because the guard conditions do not hold (the guards on the component

transition are stronger than those on the goal). Finally, a failure could occur when there is a

mismatch between an action that is required by the goal and actions that are provided by the

available components (see lines 59, 69).

www.manaraa.com

63

Reserve(confirm)

!outRide(confirm)

?inRide(date,time,addr,phnum)

26

BookRide(date,time,addr,phnum)

t

27
t

28
t

29
t

30
t

31
t

?inCCValid(valid)

[time < 4pm]/

!outRide(confirm)

?inRide(date,time,addr)

31

BookRide(date,time,addr)

t

34
t

35
t

36
t

33
t

32
t

?inCCValid(valid)

Reserve(confirm)

(a) (b)

Figure 4.3 LTS representation of (a) e-Ride’ (b) e-Ride”

4.3.3.1 Failure Cause Analysis for Health4U

In our example from Section 4.2, suppose we replace the e-Ride component service (Figure

4.2(d)) with component services e-Ride’ and e-Ride” yielding two separate instances of the

Health4U composition problem (Figure 4.3)(a) & 4.3(b)). Suppose the behavior of e-Ride’ is

exactly the same as that of e-Ride, but it additionally requires a phone number to reserve a

ride. Suppose on the other hand that e-Ride” can only reserve a ride if the time for pick-up is

before 4pm. Note that in both these instances, the algorithm for constructing the mediator fails

when it encounters the transition s9 −→ s10 in the goal LTS (see Figure 4.1(a)). Specifically,

in the case of the component service e-Ride’, the actions for Health4U and e-Ride’ do not

match, whereas in the case of e-Ride”, the corresponding guard condition is not satisfied.

Thus, in the case of e-Ride’ a failure results from an exception being raised either at line

59 or 69, indicating that a particular action present in the goal STS does not match with the

component action for the particular transition. In the case of e-Ride” a failure arises due to

an exception being raised either at line 56 or 77, indicating a mismatch in guards for the

corresponding transition relation in the goal STS. MoSCoE provides such information about

the cause of a failed attempt at service composition to the service developer. The developer

www.manaraa.com

64

can then reformulate the original goal specification (e.g., changing the function parameters

or pre-conditions) to realize a suitable mediator. These steps can be iterated until such a

mediator is eventually realized or the user decides to abort.

4.3.4 Theoretical Analysis

Theorem 1 (Soundness & Completeness) Given a goal service Tg with start state s0g

and n component services T1 . . . Tn with the corresponding start states s01 . . . s0n the procedure

generate(s0g, [s01, s02, . . . , s0n], t0, true, ∅) in Algorithm 1 is guaranteed to terminate with a

mediator TM with start state t0 if and only if (. . . ((TM ||T1)||T2)|| . . . ||Tn)\L ≈tt Tg whenever

such a mediator exists, and with a failure otherwise.

Proof Sketch: We prove the theorem by contradiction. Suppose the procedure gener-

ate(s0g, [s01, s02, . . . , s0n], t0, true, ∅) in Algorithm 1 yields a mediator TM with start state

t0 which when used to orchestrate the component services under the restrictions imposed by

the guards L, fails to realize the goal service Tg, i.e., the composition is not bisimulation

equivalent to Tg. There are four cases to consider: (i) for an input action in Tg, there is no

corresponding input action in TM ; (ii) for an output action in Tg, there is no corresponding

output action in TM ; (iii) an atomic action present in Tg is not modeled by the composition;

and finally (iv) some sequence of actions in the goal is not provided by the composition due

to the unsatisfiability of one or more guards.

However, case (i) is ruled out by the algorithm because for each message sent from the

client to Tg, a corresponding input action is created in TM to receive the message (Case 1 of

generate). Case (ii) is ruled out because for each output message that is to be sent to the

client (as modeled in Tg), a corresponding output action is created in TM if that message can be

retrieved from the message store R (otherwise an exception is raised resulting in termination

of the algorithm with failure (Case 2 of generate)). Case (iii) is ruled out because the

atomic actions in Tg are modeled by first determining the component(s) that can provide

the relevant functions and then creating the relevant transitions in TM to communicate with

the respective component(s) (otherwise the algorithm terminates with failure). Note that the

www.manaraa.com

65

communications between TM and any Ti leads to transitions labeled by τ (Definition 6). The

desired goal-function will be matched by the composition after zero steps if there is a component

at a state with outgoing transition labeled by the function; otherwise the composition will lead

to a state with an outgoing transition labeled by the desired function, after multiple τ -steps

representing component-mediator synchronous communications. Finally, in all the above cases,

if the guards do not match or the guards in the component(s) are stronger than those in Tg

(and Tcr), the algorithm terminates with an appropriate failure cause, thereby ruling out case

(iv).

Next, consider the case where there exists a mediator TM that can orchestrate the com-

ponent services T1 . . . Tn under the constraints imposed by L to realize the behavior specified

by Tg but the procedure generate terminates with a partial TM or fails to terminate. We

can rule out this possibility of generation of partial TM through an argument similar to the

one used above. Finally, the component services Tis and the goal service Tg are defined over

guarded transitions with no variable operations. As such the variable domain can be finitely

partitioned making the state-space of the component and the goal services finite. Therefore, the

procedure generate, which exhaustively explores the state-space of the services, terminates

for all possible valuations of the variables.

Complexity. The worst-case complexity of the composition algorithm is determined by the

number of recursive invocations of generate. Assume that |Tg| is the number of states in

the goal service LTS, |Tc| is the number of states in each component service LTS, and n is

the total number of component services. In the worst case, each state in the goal LTS can

be associated with any potential combination of states in the component LTSs, yielding |Tc|
n

combinations. Additionally, each pairing of a goal state with a combination of component

states is interpreted in the context of a guard G and the messages stored in R. Guards and

message stores are updated whenever the procedure generate explores a transition from a

goal or a component state. The number of distinct Gs and Rs is O(2|Tg |×|Tc|n). The worst-case

complexity of generate is therefore O(|Tg| × |Tc|
n × 2|Tg|×|Tc|n).

www.manaraa.com

66

4.3.5 Composition using Non-Functional Requirements

In the above, we relied only on “functional requirements” provided by the service developer

to determine a feasible composition. Essentially, functional requirements specified the behavior

or the functionality of the composition. However, more often service consumers want the service

providers to not only satisfy the functional requirements, but also non-functional requirements

which specify criteria that can be used to judge the operation of a system, rather than specific

behaviors. Typical non-functional requirements are reliability, scalability, and cost, and play an

important role in addressing various problems related to service discovery and composition. It

is simple to imagine a scenario in which multiple services which provide the same functionality

can fulfill a user request. In this case the ability of the user to differentiate between the services

depends upon their non-functional properties.

Within our MoSCoE framework, such non-functional requirements are specified as part

of the goal service model. Specifically, given the component services LTS1, LTS2, . . . , LTSn

and a goal service LTSg, the objective is to compose a mediator LTSM for communicating

with a set of component services, such that the composition satisfies both the functional and

non-functional requirements. The non-functional requirements are quantified using thresholds,

where a composition is said to conform to a non-functional requirement if it is below or above

the corresponding threshold, as the case may be. For example, for a non-functional require-

ment involving the cost of a service composition, the threshold may provide an upper-bound

(maximum allowable cost) while for requirements involving reliability, the threshold usu-

ally describes a lower-bound (minimum tolerable reliability). If more than one composition

model meets the goal specifications (i.e., there exists more than one mediator which can satisfy

both the functional and non-functional requirements), our approach generates all such compo-

sitions and ranks them. Compositions with higher rank are better than those with the lower

rank in terms of meeting the non-functional requirements. For example, given two valid com-

position models LTSM and LTSM ′ , if the cost of LTSM is more than LTSM ′, then LTSM is

ranked lower than LTSM ′ . It is left to the user’s discretion to select the best model according

to the requirements. Note that it is desirable to identify all the composition models, not just

www.manaraa.com

67

/*
R is the repository of component services.
a is the current atomic action in the goal LTS that is being analyzed.
v is the non-functional attribute-value.
v0 is the non-functional user-defined threshold value.
F is the optimization function.
Op is the optimization operator.
C is the attribute-value comparison operator that is dependent on F.
*/

1: procedure select(C, a, v, v0, F, Op)
2: S = {Φ};
3: select any ci in R do

4: if ((ci provides a) && (F(v0, vi))) then

5: v = v Op vi;
6: if (F(v0, v)) then

7: S = ∪ ci;
8: end if

9: end if

10: end select

11: for (each i in 1 to length(S)) do

12: for (each j in length(S) downto i+1) do

13: if (vj C vj−1) then

14: swap(S, cj , cj−1);
15: end if

16: end for

17: end for

18: if (S 6= {Φ}) then

19: return c0;
20: end if

21: end procedure

Algorithm 2 Algorithm for Service Selection using Non-Functional Requirements

the best one, since a particular model is likely to be used multiple times in future to realize the

goal service, and the component services that are part of the model may become unavailable

at the time of execution. In such situations, the user can select an alternate model from the

generated set of alternative composition models.

In our context of generating a mediator using Algorithm 1, the appropriate component ser-

vice is selected during the analysis of case 3 (see line 24 of Algorithm 1), and this selection

is done entirely based on satisfaction of functional requirements. Consequently, we have devel-

oped a simple procedure called select (Algorithm 2) that can augment Algorithm 1 to select

component services based on both functional and non-functional requirements. Invocation of

select requires as input the repository R of component services, the atomic action a in the

goal LTS that is being analyzed (in line 23 of Algorithm 1), the value v of the non-functional

attribute for the entire composition, the threshold value v0 of the non-functional attribute set

www.manaraa.com

68

/*
R is the repository of component services.
TM is the mediator generated in the 1st iteration of generate (Algorithm 1).
CM is the set of component services used for composing TM .
*/

1: procedure generateAll(R, TM)
2: Tall = T = ∪ TM ;
3: for all Ti in T do

4: for all components cj in Ci do

5: R′ = R - {cj};
6: if ((TM′ = generate(g0, [s1, s2, . . . , sj−1, sj+1, . . . , sn], true, Φ)) 6= null) then

7: if (CM′ 6= Ci) then

8: Tall = T = ∪ TM′ ;
9: end if

10: end if

11: R = R′ ∪ {cj};
12: end for

13: T = T - Ti;
14: end for

15: end procedure

Algorithm 3 Algorithm for Generating Multiple Mediators

by the user, the user-specified optimization function F, and the optimization operator Op. At

first, the procedure randomly selects a component service ci from the repository R that can

provide the required action a (line 3). If the value of the non-functional attribute of ci is

lesser or greater than the threshold value v0 (line 4) and also does not violate the global

requirement (line 6), then ci is the added to the list of candidate services. The above steps

are repeated for all the services in R (lines 3--10), and the resultant set of candidate ser-

vices are sorted based on an appropriate minimization (e.g., cost should be minimized) or

maximization (e.g., reliability should be maximized) criteria (lines 12--17). Once the

best candidate service is selected from the sorted list (line 19), the execution of the case 3 in

the generate procedure of Algorithm 1 can proceed normally.

However, the combination of generate and select procedures will only model a single

mediator that can potentially satisfy all the functional and non-functional requirements. As

mentioned earlier, in practice there might be multiple component services that can satisfy the

functional and non-functional requirements of the user, and hence can be analyzed for modeling

more than one composition model. The procedure generateAll (Algorithm 3) assists in

precisely realizing this requirement. It takes as input the repository R of all component services,

and the mediator TM that was generated by execution of generate (during its first iteration).

The basic idea is to replace every component c present in TM with an alternate c′ to generate

www.manaraa.com

69

TM ′s, and repeat the procedure for each TM ′ . Thus, every component in R is exhaustively

analyzed to generate a set of mediators that satisfy both the functional and non-functional

requirements.

4.4 Discussion

In this chapter, we introduced a novel approach to developing composite services through

an iterative reformulation of the goal service specifications. Specifically, we have presented

a theoretically sound and complete technique for constructing a mediator that enables the

interactions among component services to realize the behavior of the desired goal service. We

use Labeled Transition Systems (LTSs) augmented with state variables over an infinite domain

and guards over transitions to model the services. A unique feature of the proposed approach

is its ability to work with an abstract (possibly incomplete) specification of a desired goal

service. In the event the goal service cannot be realized (either due to incompleteness of the

specification provided by the developer or the limited functionality of the available component

services), the proposed algorithm identifies the causes for failure and communicates them to

the service developer. The resulting information guides further iterative reformulation of the

goal service until a composition that realizes the desired behavior is realized or the user chooses

to abort. In addition to the above, we demonstrated how non-functional requirements can be

incorporated into the composition framework. The main contributions can be summarized as

follows:

• A new paradigm for modeling Web services based on abstraction, composition, and

reformulation. The proposed approach allows users to iteratively develop composite

services from their abstract descriptions.

• A sound and complete algorithm for selecting a subset of the available component services

that can be assembled into a feasible composition that realizes the goal service with

the user-specified functional and non-functional requirements, and for determining a

mediator to interact with the component services. The proposed approach uses a variant

www.manaraa.com

70

of LTS with guards on transitions to deal with the case when data and process flow are

modeled in an infinite-domain.

• A technique for determining the cause(s) of failure of composition to assist the user (i.e.,

service developer) in modifying and reformulating the goal specification in an iterative

fashion.

In spite of these advances, the proposed approach is restricted to services which can be

specified using a limited class of constraints as guards in the LTS. This restriction ensures that

the fixed point computation of similarity relation terminates, which necessitates investigation

of a larger class of constraints (e.g., range constraints and arithmetic operations) based on

the techniques described in [109]. Additionally, we focused on services which demonstrate a

deterministic behavior without loops. Handling non-deterministic behavior that often char-

acterizes real-world services is an important area of ongoing research. Furthermore, in our

algorithm for composition based on non-functional requirements, we considered only single

non-functional attributes for selection of candidate services and generating alternate composi-

tion models. However, this is a very restrictive setting and the ability to model compositions

that can satisfy multiple non-functional requirements is needed. Finally, one area that needs

significant investigation is the evaluation of our approach using real-world and benchmark

[136] cases for service composition. As with any existing technique for service composition, the

practical feasibility of our approach is also ultimately limited by the computational complexity

of the service composition algorithm. Hence, methods for reducing the number of candidate

compositions need to be examined e.g., by exploiting domain specific information to impose

a partial-order over the available services, or reducing the number of goal reformulation steps

needed by exploiting relationships among failure causes (or between failure causes and services,

or between services) need further investigation. One possibility is to explore development of

heuristics for hierarchically arranging failure-causes to reduce the number of refinement steps

typically performed by the user to realize a feasible composition and doing usability studies

along those dimensions. Additionally, it is important to understand the precision and recall

measures to capture the effectiveness of search for component services that match the specifica-

www.manaraa.com

71

tions, doing which will require systematic experiments using service composition benchmarks.

However, one can draw an analogy with information retrieval systems that respond to user

queries (typically expressed using keywords) in a single step as opposed to systems that allow

users to iteratively reformulate their query based on the retrieved results [85, 172]. In general,

the information retrieval systems that support iterative query reformulation are able to achieve

superior performance in terms of precision and recall (relative to documents of interest to the

user). Analogously, all other factors being same, the precision and recall achievable (after a few

iterations of reformulating the goal) by any service composition system that supports iterative

reformulation of specifications would be superior compared to a system that does not.

www.manaraa.com

72

CHAPTER 5. WEB SERVICE SPECIFICATION REFORMULATION

This chapter introduces the problem of Web service specification reformulation and de-

scribes in details our approach to address the problem. The chapter is divided into four

sections. The first section provides background to and describes the problem of Web service

specification reformulation. An illustrative example is described in the second section to ex-

plain the salient features of our proposal, which is discussed in the third section. The fourth

section concludes the chapter with a discussion.

5.1 Introduction and Problem Description

In the previous chapter, we introduce the problem of Web service composition where we

outlined that in many cases a composite (or goal) service may not be realized using a set

of available (or component) services because the specified functional and/or non-functional

requirements are not met. In such circumstances, a service developer has to modify the spec-

ification of the goal service manually and repeat the composition procedure. Generally, there

are two broad classes of scenarios in which a service composition algorithm fails to realize a

specified goal service:

• The desired functionality of the goal service cannot be realized by composing the available

component services. In this case, the user needs to either modify the overall functionality

of the desired goal service (e.g., settle for a functionality that is not quite the same as

what was initially desired) and/or broaden the search for component services beyond

those initially considered by the algorithm.

• The desired functionality of the goal service can be realized by composing the available

www.manaraa.com

73

component services, but the composition algorithms fail to “mimic” the structure of

the goal service using the available component services. In this case, it is possible to

reformulate the structure of the goal service specification, without altering its overall

functionality, into one that can be realized by using the existing services.

Our work illustrated in Chapter 4 has provided automated identification of cause(s) of failure

of composition in the form of information about specific inputs or outputs and pre- and post-

conditions of the actions as well as the control and data flows that are part of the goal service

specification, but cannot be realized using the available component services. However, these

methods do not distinguish between the two scenarios described above. Furthermore, in both

scenarios, the tedious manual reformulation of an alternative goal service specification to be

tried is left to the user. For example, in techniques based on state charts [27], a service developer

will have to manually make changes either by adding/deleting state transitions and/or editing

transition labels. Similarly, techniques based on LTS, including ours, have the same limitation.

Motivated by this need, we present a novel approach forcomposing Web services through

automatic reformulation of service specifications (see Figure 5.1). Without loss of generality,

we use LTS to represent the goal service provided by a service developer, the set of available

component services, and the generated composite service that realizes the goal. We show that

any alternative goal LTS reformulation that does not violate the data and control dependen-

cies that are implicit in the user-supplied goal service LTS specification is provably functionally

equivalent to the goal service. The reformulation of goal service specification is triggered by the

failure of the composition algorithm to realize a composite service using the “original” LTS

specification of the goal service provided by the service developer. We describe an efficient

data structure, in the form of a dependency matrix and algorithms to maintain and analyze

the data and control flow dependencies in goal service LTS specification. This data structure

can be used to iteratively generate (as yet untried) alternatives that are functionally equivalent

to the user-supplied goal service LTS specification until composition succeeds or no alternative

reformulations remain to be tried. Because generating the complete set of alternatives that are

functionally equivalent to a user-supplied goal service LTS specification is expensive and po-

www.manaraa.com

74

Goal Service Dependency
Specification

Equivalent Class Adaptable Composition Success

(Composition realizes a
member of Equivalent class)

Failure (Feedback with cause)

Developer
Service

from Repository
Component Services

of GoalAnalyzer
 (G)

Engine

Figure 5.1 Composing Web Services through Automatic Reformulation of

Service Specifications

tentially wasteful, we generate the alternatives on-the-fly. The result is a significant reduction

in the need for the tedious manual intervention in reformulating specifications by limiting such

interventions to settings where both the original goal LTS as well as its alternatives cannot be

realized using the available component services. We explain the salient features our approach

in details in the remainder of this chapter and begin with an illustrative example in the next

section.

5.2 Illustrative Example

Assume that a service developer is assigned to model a new composite (or goal) service

that allows clients to purchase items and ship them to a particular destination. To achieve

this, the goal service operates as follows: (i) First, it accepts from the client as input the

name of the item to be purchased along with the desired quantity and the address where the

consignment has to be shipped. (ii) Once the input is received, it searches the particular item

for the required quantity in an inventory. (iii) If the search fails, a failure message is sent to

the client. But if the search succeeds, depending on the quantity of the item to be purchased,

either bulk or normal shipping is checked for confirming whether the items can be shipped

to the particular address or not. (iv) Also, if the item search succeeds, the client is asked to

provide payment information which is eventually used for purchasing the items. (v) Finally,

an appropriate notification is sent to the client indicating whether the entire process was a

success or failure.

www.manaraa.com

75

NormalShip(name,addr;ship)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

Purchase(name,quantity,ship,payment;done)

!outPurchase(done)

?inPay(payment) BulkShip(name,addr;ship)

?inPay(payment)

10

1
s

2
s

3
s

s

11

4
s

5
s

6
s

7
s

8
s

s

0

9
s

s

Actions Name

a ?inItem(name,quantity,addr)

b ItemSearch(name,quantity;result)

c ?inPay(payment)

d !outSearch(“failure”)
e BulkShip(name,addr;ship)

f NormalShip(name,addr;ship)

g Purchase(name,quantity,ship,payment;done)

h !outPurchase(done)

Guards Name
G1 [quantity<100 ∧ result=“y”]
G2 [quantity>100 ∧ result=“y”]
G3 [result=“n”]

(a) (b)

Figure 5.2 (a) LTS Representation of (a) e-Buyer service (b) Mapping of

Actions/Guards in e-Buyer.

Figure 5.2(a) shows the representation of such a goal service, named e-Buyer, described

using a labeled transition system. Here, ?msgHeader(msgSet) and !msgHeader(msgSet) refer

to the input and output actions of the services, essentially corresponding to the reception

and emission of messages, respectively. Communication between different services occurs via

synchronization between actions with the same msgHeader resulting in the transfer of msgSet

from the entity performing an output action to the one performing an input action. For

example, ?inItem(name,quantity,addr) is an input action in Figure 5.2(a) where inItem is

the message header and name, quantity and addr are variables in the input message. The

services also include atomic actions denoted by funcName (inputSet; output). Additionally,

a transition is annotated by guards (denoted by [guards]) which control whether or not it is

enabled; the absence of a guard implies that the guard is true (always enabled). In essence,

the guards are used to capture conditional-transitions and model the branching behavior of a

www.manaraa.com

76

!confirm(name,quantity,ship)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

NormalShip(name,
addr;ship)

BulkShip(name,
addr;ship)

t

1
t

2
t

3
t

0

8

4
t

5
t

6
t

7
t

t

(a)

!outPurchase(done)

?confirm(name,quantity,ship)

?inPay(payment)

Purchase(name,quantity,ship,payment;done)

13

12
t

11
t

10
t

t

9
t

(b)

!outPurchase(done)

?inItem(name,quantity,addr)

ItemSearch(name,quantity;result)

!outSearch("failure")

[result="n"]
[quantity<100 /\

result="y"]
[quantity>100 /\

result="y"]

NormalShip(name,
addr;ship)

BulkShip(name,
addr;ship)

?inPay(payment)

Purchase(name,quantity,ship,payment;done)

9

1
s

2
s

3
s

s

10

4
s

s
s

6
s

7
s

8
s

s

0
s

(c)

Figure 5.3 LTS Representation of (a) Search-N-Ship (b) Purchaser (c)

e-Buyer’ services

www.manaraa.com

77

service.

A closer analysis of Figure 5.2(a) would reveal various data and control flow (in-) de-

pendencies between the actions present in the e-Buyer service. For example, the input

action ?inItem (name,quantity,addr) has to occur before the atomic action ItemSearch

(name,quantity;result) can be executed since the information required to execute the lat-

ter is provided by the former. Similarly, the atomic actions NormalShip (name,addr; ship)

and BulkShip(name,addr;ship) are executed mutual exclusively depending on the valuation

of the variables quantity and result.

Consider a scenario where a service developer wants to determine whether a goal service

such as e-Buyer can be realized using a set of component services (Figures 5.3(a) & 5.3(b)).

If Search-N-Ship is selected first, it leads to a composition failure due to different branching

behaviors since e-Buyer requires the execution of an input action ?InPay(payment) when

[quantity < 100 ∧ result = y] is true, whereas Search-N-Ship invokes the atomic action

NormalShip when the same condition is satisfied. Observe that, ?inPay(payment), which is

provided by Purchaser, is only possible after it synchronizes with Search-N-Ship on the mes-

sage confirm. Similarly, selecting the Purchaser service first leads to a failure as well. For

both the circumstances, typically the service developer will be required to modify/reformulate

the goal service representation (in this case, adding/deleting transitions and/or changing tran-

sition labels in the LTS representation of e-Buyer) and re-initiate the composition process.

However, it will be beneficial if there exists a technique that can automatically carry out

all the potential modifications on behalf of the service developer and iterate through the com-

position process. As a matter of fact, in the current example, there exists an alternate goal

service specification (e-Buyer’, see Figure 5.3(c)) which is (a) functionally equivalent to but

structurally different from e-Buyer, and (b) realizable from the existing component services.

Note that, the above composition process failed for the original goal service (i.e., e-Buyer)

since typically the composition algorithms aim to realize the exact structural representation of

the goal service using the component services. Instead, we will show in the proceeding sections

that it suffices to realize a composition using alternate structural representations (such as

www.manaraa.com

78

e-Buyer’) of the original goal service, as long as the generated alternatives have the same

functionality as the original goal service.

5.3 Our Approach

As described in Chapter 4, composition within our framework amounts to generating a

mediator that will realize the goal service from a set of component services. In our setting, we

only consider the functional specifications which are represented by LTSs. Similar approaches

have been proposed in literature that are based on state charts [27], finite-state automata [33],

and logic programming [169]. However, a common thread to all the techniques is that realiza-

tion of the goal service is based on the exact realization of the structure of the specification.

For instance, in techniques based on LTSs, composition requires the exact realization of the

LTS representation of the goal service from the sequence of operations in the component LTSs,

even though, in many cases exact realization requirement can be relaxed to realize another

LTS which is functionally equivalent to the original one, but structurally different.

5.3.1 Functionally Equivalent Web Services

We define the notion of functional equivalence of two services in terms of the corresponding

equivalence between the respective LTSs. Given an LTS L = (S,−→, s0, SF), its behavior

can be represented as the sequences of actions and guards from s0 to some state in SF .

Notationally, we will describe such a sequence as a string (s0σ0)(s1σ1) . . . (snσn), where WLOG

we can assume that every transition in LTS is labeled either with an action or a guard and

∀i(0 ≤ i ≤ n) : si
σi−→ si+1 such that s0 = s0 and sn+1 ∈ SF . We refer to all such sequences in

L as the behavior of L and denote it by B(L). The definition of functional equivalence based

on B(L) is as follows:

Definition 8 (Functional Equivalence) An LTS L1 is said to be functionally simulated by

an LTS L2, denoted by L1 v L2, if and only if for all seq = (s0σ0)(s1σ1) . . . (snσn) ∈ B(L1)

there exists seq’ ∈ B(L2) such that seq and seq’ are permutation of each other with the

following conditions:

www.manaraa.com

79

1. For i < j, (siσi) appears before (sjσj) in seq’ if ovars(σi) ∩ ivars(σj) 6= ∅.

2. For i < j, (siσi) appears before (sjσj) in seq’ if si is a branch point in L1 and σj does

not appear in all sequences in B(L1) that contains si.

L1 and L2 are functionally equivalent, denoted by L1 ≡ L2, if and only if L1 v L2 and L2 v L1.

In the above, the first condition asserts that if LTS L1 demands input of an operation

(for either an action or guard) which must be obtained from the output of another operation,

then it must be conformed by the corresponding sequence in LTS L2. The second condition

ensures that if an operation depends on a guard (i.e., appears in a specific branch) in L1, it

must similarly depend on the same guard in L2. Functional equivalence demands that L1 and

L2 functionally simulate each other. Note that this notion of equivalence is different from

simulation or bisimulation equivalence applied traditionally in process algebra [129] where the

objective is to analyze equivalences based on structural similarities.

It can be shown that given an LTS L1, we can synthesize a set of LTSs that are functionally

equivalent to L1 by appropriately analyzing the control and data flow requirements present in

the L1. This forms the central theme of our technique. Given an LTS representation of the

goal service, our technique automatically identifies functionally equivalent alternates that can

be successfully realized from the available component services. For example, the atomic action

NormalShip(name,addr;ship) in Figure 5.2(a) does not depend on the input action ?inPay

(payment), even though in the LTS specification they “appear” to be dependent on each other.

Consequently, this gives the liberty to manipulate the ordering of the operation sequences

in the LTS, which potentially amounts to generating alternate functionally equivalent LTS

specifications (in this case Figure 5.3(c)), and hence an opportunity to determine the existence

of feasible compositions using the alternatives.

Our work has resulted in the development of algorithms for automatically generating such

alternate representations which could potentially lead to a feasible composition. In particular,

our technique automatically extracts the dependency relations between the operations in the

www.manaraa.com

80

goal LTS Lg (Section 5.3.3), which are represented using a dependency matrix (Section 5.3.2),

and reformulates Lg such that it can be realized from the existing components without altering

its “overall” desired functionality (Section 5.3.4).

5.3.2 Web Service Dependency Matrix

Given an LTS describing a service, there are two types of dependencies:

1. Data Dependency: if the input of an action a or the valuation of a guard g depends on

the output of another action b, then a or g is said to be data dependent on b.

2. Control Dependency: if the execution of an action a or the valuation of a guard g depends

on the valuation of another guard g′, then a or g is said to be control dependent on g′.

The dependencies are captured using a dependency matrix defined as follows.

Definition 9 (Dependency Matrix) Given an LTS L = (S, s0,−→, SF), its dependency

matrix DL is a N ×N matrix, where N is the number of actions (atomic, input and output)

and guards in the transition-labels. For a row i and column j in DL, the cell Ci,j is assigned

such that:

• if Ci,j = {X}, then the i-th element is control-dependent on the j-th element. The assign-

ment X is done between action-guard or guard-guard pairs denoting that the guard j has

to be analyzed before action i can be executed or guard i can be analyzed.

• if Ci,j = ovars(i) ∩ ivars(j), then the i-th element is data-dependent on the j-th element

i.e., outputs from the j-th element are used for the analysis/evaluation of the i-th element.

This assignment is done between guard-action or action-action pairs.

• if Ci,j = {Y}, then the i-th and j-th elements are guards which label different transitions

from a branch-point in L. That is, the elements i and j are mutually exclusive and cannot

appear in the same path in L.

www.manaraa.com

81

Figure 5.4 above shows the dependency matrix of e-Buyer service shown in Figure 5.2(a).

For example, it states that action a (?inItem) has to occur before action b (ItemSearch) be-

cause the variables name and quantity required to execute b (input parameters of ItemSearch)

are provided by a (inputs to the service). Similarly, the guards G1, G2 and G3 are mutually

exclusive since they appear in separate execution paths. Here, a, b, G1, G2, and G3 correspond

to actions and guards in Figure 5.2(b).

Theorem 2 For any two LTSs L and L′, L ≡ L′ if and only if their dependency matrices DL

and DL′ are identical.

Proof: Let L ≡ L′ and DL 6= DL′ . DL and D′
L must have the same set of row or column

labels since from Definition 8, L ≡ L′ implies that they have same set of operations. Therefore,

DL 6= D′
L implies that there exists Ci,j 6= C′i,j where Ci,j ∈ DL and C′i,j ∈ D′

L. Note that,

Ci,j 6= C′i,j implies that Ci,j ∩ C′i,j = ∅. Therefore, the only way Ci,j 6= C′i,j is when Ci,j 6= ∅

and C′i,j = ∅ or vice versa. Let Ci,j = {X} and C′i,j = ∅ (case 1 in Definition 9). This implies

that i is control dependent on j in L and i is not control dependent on j in L′. Therefore, in

all sequences in B(L) which contains i, j appears before i while there exists some sequence in

B(L′), where i is present and j is absent or i is present before j. This contradicts our initial

assumption that L ≡ L′ by Definition 8. Same type of contradiction can be realized for other

cases where Ci,j 6= C′i,j.

Next assume DL = D′
L and L 6≡ L′. Therefore, there exists a pair of operations i and j

such that j appears before i in all sequences in B(L) containing i. However, there exists at

least one sequence in B(L′), containing i and j, where i appears before j. The case implies

that i depends on j in L while it is not dependent on j in L′. In other words, Ci,j 6= ∅ while

C′i,j = ∅. This leads to contradiction of the initial assumption of DL = D′
L. �

In our setting, we only consider the functional specifications which are represented by LTSs.

Consequently, composition requires the exact realization of the LTS representation of the goal

service from the sequence of operations in the component LTSs. However, this condition can

be relaxed due to the following: though the dependencies between operations can be effectively

captured in LTSs, it is not possible to truly capture independent operations. In fact, operations

www.manaraa.com

82

that are independent may appear to be dependent due to the order in which they appear in

the LTS. For example, NormalShip(name,addr;ship) in Figure 5.2(a) does not depend on

?inPay(payment) operation, but in the LTS specification, they appear in a specific order. As

a result, if the component services do not realize the exact sequence of operations in the goal

LTS, the composition fails.

To counter this situation, we precisely identify the required operation dependencies from

the LTS and determine a composition (if it exists) that realizes these dependencies. In essence,

our technique automatically extracts the dependency relations between the operations in the

goal LTS L (Section 5.3.3), which are represented using a dependency matrix (Section 5.3.2),

and adapts L such that it can be realized from the existing components without altering the

“overall” desired functionality (Section 5.3.4).

5.3.3 Generation of the Dependency Matrix

Identifying Data Flow Dependency. Procedure Data FlowDep in Algorithm 4 identifies

the data dependencies in an LTS and appropriately updates the dependency matrix. It takes

as argument the current state (curr) of the LTS being explored for dependency analysis, the

operation (guard or the action, Op) and the set of variables (VSet) in Op whose data depen-

dencies are being analyzed. Backward exploration of the LTS is performed from curr. If a

parent-state is reachable via an action “a” such that the intersection of its output and VSet

is non-empty (lines 6--9), then the corresponding cell in the dependency matrix (COp,a)

is assigned output(a). The VSet is updated by removing output(a) from the set. Finally,

the procedure is recursively invoked (line 10). The recursion terminates (lines 2--4) when

VSet is empty (i.e., all the data-dependencies of VSet have been identified) or curr is the start-

state of the transition system (i.e., there exists no incoming transition to curr). For example,

invocation of DataFlowDep(s1, ItemSearch, {name,quantity; result}) in e-Buyer of Fig-

ure 5.2(a), will create a dependency with the action ?inItem since the latter (i.e., ?inItem)

provides the inputs required to execute the former (i.e., ItemSearch).

Identifying Control Flow Dependency. Procedure Ctrl FlowDep in Algorithm 5 iden-

www.manaraa.com

83

1: procedure DataFlowDep(curr, Op, VSet)
2: if (curr is a start-state Or VSet = ∅) then

3: return

4: end if

5: for all parent
g,a
−→ curr do

6: if (output(a) ∩ VSet 6= ∅) then

7: COp,a := output(a)

8: VSet := VSet − output(a)
9: end if

10: DataFlowDep(parent, Op, VSet)
11: end for

12: end procedure

Algorithm 4 Identifying Data Flow Dependency

tifies the control dependencies in an LTS and appropriately updates the dependency matrix.

Similar to DataFlowDep, it takes curr and Op as arguments and performs backward traver-

sal from curr. If a parent state of curr has more than one outgoing transition (i.e., it is a

branch-point in the LTS with guarded transitions originating from it), then the cell (COp,g) in

the dependency matrix corresponding to the operation Op and the guard g (associated with

the transition from the parent to curr) is assigned X (lines 6--8). The procedure is recur-

sively invoked (line 9) and terminates when curr is the start-state of the transition system

(i.e., there exists no incoming transition to curr). For example, invocation of CtrlFlowDep

(s7, NormalShip{name,addr;ship}) (Figure 5.2(a)), will create a dependency with the guard

[quantity<100 ∧ result= “y”] since its valuation will decide whether or not NormalShip will

be executed.

As can be observed, the procedure CtrlFlowDep conservatively classifies operations as

control dependent on a branch-point (more precisely on the guard associated with the branch-

point) in which it appears. However, there are cases where an operation might appear in all

the possible branches. In such a situation, the said operation is not control dependent on the

branch-point as it is invoked for all possible valuation of the guards at the branch-point. In

order to precisely identify control dependencies by eliminating such cases, CtrlFlowDep is

followed by invocation of UpdateCtrlFlowDep (Algorithm 5). This procedure also marks

dependency matrix cells with Y to identify the operations which must not appear at branches as-

sociated with a particular guard in the transition system. his procedure, unlike CtrlFlowDep

and DataFlowDep, performs forward traversal of the LTS from each branch-point. This pro-

www.manaraa.com

84

a b c d e f g h G1 G2 G3

a
b name,quantity

c X X

d X

e name,addr X

f name,addr X

g name,quantity payment ship ship X X

h order X X

G1 quantity result Y Y

G2 quantity result Y Y

G3 result Y Y

(a)
b c d e f g h G1 G2 G3

b
c X X

d X

e X

f X

g payment ship ship X X

h order X X

G1 result Y Y

G2 result Y Y

G3 result Y Y

(b)
c d e f g h G1 G2 G3

c X X

d X

e X

f X

g payment ship ship X X

h order X X

G1 Y Y

G2 Y Y

G3 Y Y

(c)
c f g h G1

c X

f X

g payment ship X

h order X

G1

c e g h G2

c X

e X

g payment ship X

h order X

G2

(d) (e)

d G3

d X

G3

c f g h

c
f
g payment ship

h order

(f) (g)

Figure 5.4 Dependency Matrices (a) DL (b) D1
L (c) D2

L (d) D3
L (e) D4

L (f)

D5
L (g) D6

L

www.manaraa.com

85

1: procedure CtrlFlowDep(curr, Op)
2: if (curr is a start-state) then

3: return

4: end if

5: for all parent
g,a
−→ curr do

6: if (outGoingTrans(parent) > 1) then

7: COp,g := X

8: end if

9: CtrlFlowDep(parent, Op)
10: end for

11: end procedure

12: procedure UpdateCtrlFlowDep(branchPoint)
13: T := {paths from branchBegin to branchEnd}

14: GuardSet := {g | branchBegin
g,a
−→ next}

15: for all Op such that ∃g ∈ GuardSet : COp,g = X do

16: if (∀t ∈ T : Op ∈ t) then

17: ∀g′ ∈ GuardSet : remove X from COp,g′

18: end if

19: end for

20: for all g1, g2 ∈ GuardSet do

21: Cg
1
,g

2
:= Y

22: end for

23: end procedure

Algorithm 5 Identifying Control Flow Dependency

cedure identifies (a) the set of paths originating from each branch-point to a state which is

either a final state and/or a joint point of the branch (line 13), and (b) the set of guards at a

branch-point (line 14). If there is an operation Op (obtained from procedure CtrlFlowDep)

which is dependent on at least one guard associated with the branch-point (line 15) and also

appears in all paths in T (line 16), then Op is not control-dependent on any guard appearing

in the branch-point under consideration. Accordingly, all the Xs in COp,g are removed (line

17). Furthermore, Y is assigned to the cells corresponding to the guards associated with the

same branch point as all the guards cannot evaluate to true simultaneously, i.e., they are mu-

tually exclusive (lines 20--21). For example, invocation of UpdateCtrlFlowDep(s2) in

e-Buyer of Figure 5.2(a) will assign Ys to the cells CG1,G2
, CG1,G3

, CG2,G3
, CG2,G1

, CG3,G1
and

CG3,G2
in the dependency matrix.

5.3.4 Algorithm for Reformulation-based Web Service Composition

Once we have obtained a dependency matrix DL of the goal service LTS L as outlined

above, our objective is to analyze the matrix and identify alternate models (with the same

data and control dependencies) of L which can be used for determining feasible compositions.

www.manaraa.com

86

/*
DL is the Dependency matrix of the goal LTS L.
S is the set of component service states.
*/

1: procedure ReformulateService(DL, S)
2: if (DL is null) then

3: return true;
4: end if

5: R := {i | ∀j ∈ Dcol
L : Ci,j is empty or only contains Y}

6: select any r ∈ R do

7: if (for any j ∈ Dcol
L , Cr,j = Y) then

8: DSet := Reduce(DL, r, true);
9: for all D′

L ∈ DSet do

10: if ¬ReformulateService(D′
L, S) then

11: break and backtrack to line 6

12: end if

13: end for

14: return true
15: else

16: {D′
L} := Reduce(DL, r, false);

17: if CreateTransition(r, S′) then

18: if ¬ReformulateService(D′
L, S′) then

19: backtrack to line 6

20: else return true
21: end if

22: else backtrack to line 6

23: end if

24: end if

25: end select return false
26: end procedure

27: procedure Reduce(D, r, flag)
28: DSet := ∅;
29: if (flag = true) then

30: for all (i ∈ {Op | COp,r = Y} ∪ {r}) do

31: WorkingSet := {j | Ci,j = Y}
32: DNew := D
33: remove Y from all the Ci,r and Cr,i in DNew

34: while (WorkingSet 6= ∅) do

35: for all j ∈ WorkingSet do

36: if (Ck,j 6⊆
⋃

{Ck,l | l 6= j}) then

37: add k to WorkingSet

38: end if

39: remove j from WorkingSet

40: remove j-th row and column from DNew

41: end for

42: end while

43: DSet := DSet ∪ DNew

44: end for

45: else

46: remove r-th row and column from D
47: DSet := {D}
48: end if

49: return DSet

50: end procedure

Algorithm 6 Reformulation-based Service Composition

www.manaraa.com

87

This technique essentially allows reformulation during composition, that is, given a goal LTS L

which results into failure of composition, the technique automatically reformulates L to identify

a functionally equivalent model L′ and checks for feasible compositions on-the-fly, that is, L′

is generated as and when the composition feasibility is checked, as opposed to, generating L′

first and then checking for its feasibility. The main intention behind this step is due to the

fact that generating the complete set of alternatives L′s that are functionally equivalent to L is

expensive and potentially wasteful. Algorithm 6 shows our approach for identifying alternate

models from the dependency matrix, which we explain below using the example described in

Section 5.2.

The procedure ReformulateService (Algorithm 6) takes as argument DL, the depen-

dency matrix of the goal service (e.g., e-Buyer, Figure 5.2(a)), and S, the set of states of

the component services (e.g., Search-N-Ship, Figure 5.2(c) and Purchaser, Figure 5.2(d)).

Initially, the procedure determines the set of operations in DL which are not dependent on any

other operation (line 5). These operations are required to be realized by the component ser-

vices. For example, the operation a in the DL (Figure 5.4(a)) of e-Buyer is not dependent on

any other operation and can be realized by the transition from state t0 to t1 of Search-N-Ship

(CreateTransition1 in line 17 holds true). As a result, DL is updated to D1
L (Figure

5.4(b)) by removing the row and column corresponding to a signifying that a is already re-

alized (removing the row) and all the dependencies on a are, therefore, eliminated (removing

the column). This is achieved by executing lines 16 in ReformulateService and 46--47

in Reduce (Algorithm 6).

In the next step, ReformulateService is recursively invoked with D1
L and the new set of

states of the component services, S′, reached after realizing operation a (e.g., Search-N-Ship

is in state t1) (line 18). In D1
L, operation b is not dependent on any other operation and can

be again realized by Search-N-Ship (line 17). Thus, D1
L is updated to generate D2

L (Figure

5.4(c)) following the same steps as described above and ReformulateService is recursively

1The procedure CreateTransition is used to generate the alternate LTS specification, L′, as part of
the reformulation-based composition process. It takes as argument the operation r being analyzed and the
set of component states S′ reached after realization of r (by one of the component services) and generates a
corresponding transition in L′. Details are present in Chapter 4.

www.manaraa.com

88

invoked.

Proceeding further, inD2
L the only possible operations that can be considered are G1, G2 and

G3 since they are independent of other operations (line 5). However, all the three operations

are guards and lead to different branches of a branch-point. Consequently, the component

services must realize each individual branch. Furthermore, since the branches are mutually

exclusive (i.e., their rows and columns are marked Y), if a branch Gi is considered, then all the

branches at the same branch point corresponding to the guards Gj (j 6= i) must be removed

from the dependency matrix. This is achieved when ReformulateService at line 8 invokes

Reduce. The procedure Reduce executes the statements from lines 29--45 to create a set

of matrices corresponding to each guard. During the execution of Reduce, initially a working

set of operations that must be removed is created (line 31). Referring to our example, consider

the case where we are exploring the branch corresponding to guard G1 (line 6) in D2
L , and

the working set is {G2, G3}. Firstly, all the Y-marks are removed from the cells CGi,Gj
(line 33)

in D2
L. Then for each operation x in the working set, any operation y that is solely dependent

on x is added to the working set (line 37). For example, for G2 in D2
L, the operation e is

solely dependent on G2, whereas operation c is not since Cc,G1
= X. Thus, e is added to the

working set and operations solely dependent on e are identified iteratively for addition to the

working set. On the other hand, since operation c is not solely dependent on G2, it is not added

to the working set. Furthermore at each iteration, an element is removed from the working

set and its corresponding rows and columns are removed from the dependency matrix (line

40) and the above process continues until the working set becomes empty. In our example,

execution of line 8 with D2
L will result in the creation of matrices D3

L (corresponding to G1

being selected at line 30), D4
L (corresponding to G2) and D5

L (corresponding to G3) as shown

in Figures 5.4(d), 5.4(e) and 5.4(f), respectively.

The procedure ReformulateService will be invoked with each of these matrices as in-

puts (line 9). The procedure terminates successfully when the dependency matrix is empty

denoting all operations are successfully realized by the component services and there were no

failures during composition (lines 2--3). Otherwise, if a particular operation is not realiz-

www.manaraa.com

89

able then backtracking is performed to pick an alternate operation (line 11). For example,

assuming that D3
L is selected in line 9, after realizing the guard G1 ([quantity < 100 ∧

result = y]) by Search-N-Ship, it will be updated to create a new dependency matrix D6
L

(Figure 5.4(g)). In D6
L, the operations that can be considered are c (?inPay(payment)) and

f (NormalShip (name,addr;ship)) since they are independent of other operations (line 5).

However, if operation c is selected first in line 6, it will result into a composition failure

since such a behavior cannot be realized by any of the existing component services. That

is, none of the component services (Figures 5.2(c) & 5.2(d)) has a transition associated with

the guard G1 immediately followed by another transition associated with the action c. As a

result, ReformulateService will backtrack, and select f and determine if it can be realized.

Thus, in essence, where the existing algorithms for service composition would have failed at

this point, our approach automatically adapts the goal service based on the analysis of control

and data flow dependencies for identifying feasible compositions. For this particular example,

the composition obtained eventually will correspond to the (alternate) goal service e-Buyer’

(Figure 5.3(c)). Note that even though the original goal service e-Buyer and its alternate

model e-Buyer’ are structurally different, they are functionally equivalent since they realize

the same functionality and have the same data and control dependencies.

Theorem 3 (Soundness & Completeness) Given a service L and set of component ser-

vices CS with start state-set S, there exists a service L′ such that ReformulateService

(DL, S) returns true if and only if L ≡ L′ and CS realizes L′.

Proof: Let ReformulateService(DL, S) return true and for all L′s realized from CS, such

that L 6≡ L′. From Theorem 2, ∀L′ : L′ 6≡ L⇒ D′
L 6= DL. In other words, there exists at least

one pair of operations in L such that Ci,j 6= C′i,j (Ci,j ∈ DL and C′i,j ∈ D′
L) that is not realizable

from CS. Proceeding further, Ci,j demands a specific ordering or mutual exclusion of i and

j in all sequences and this is not realizable from CS. This, in turn, implies that Reformu-

lateService fails at line 17 for all possible choices at line 6, and eventually returns false

at line 25. This leads to contradiction of our initial assumption that ReformulateService

returns true.

www.manaraa.com

90

Next, consider that case where ReformulateService returns true but CS does not realize

any L′ (≡ L). I.e., for all possible alternate sequences in B(L), their exists some operation

in each sequence for which CreateTransition fails. If such a failure occurs (line 17) in

ReformulateService, the algorithm backtracks and selects alternate functionally equivalent

sequences using DL. Finally, when all alternates are exhausted and CreateTransition fails

in all of them, ReformulateService returns false (line 25). This contradicts our initial

assumption that ReformulateService returns true.

Finally, consider that there exists an L ≡ L′ and CS realizes L′ but ReformulateService(DL, S)

returns false (line 25). This will happen when CreateTransition fails for all possible al-

ternates identified by ReformulateService. If we assume that ReformulateService cor-

rectly computes all possible alternates, then failure of ReformulateService due to failure

of CreateTransition directly contradicts the initial assumption that CS realizes L′(≡ L).

The other alternate is that ReformulateService does not correctly consider all possi-

ble alternates, and hence fails to identify the B(L′) which is realizable from CS. Line 6 in

ReformulateService considers all operations which are not data-dependent on any other

operation as candidates for realizability. If such a candidate operation is a guard, Reformu-

lateService invokes Reduce to obtain dependency matrices of all paths beyond the branch

point of the guard under consideration. The procedure Reduce selects all the mutually exclu-

sive guards (line 30) and for a particular guard i, it firstly removes rows and columns of the

guards that cannot appear in the same sequence as i, and then iteratively removes the rows

and columns of operations that are solely dependent (directly or indirectly) on these guards

(lines 31--42). In short, Reduce correctly identifies all the possible dependency matrices

beyond a branch point and ReformulateService, in turn, considers all the possible ways of

realizability using those matrices. Therefore, if there exists an L′ ≡ L which is realized from

CS, then the ReformulateService must return true. �

Complexity Analysis. The procedures DataFlowDep and Ctrl FlowDep perform back-

ward depth-first traversal and their complexity is O(|S| × | −→ |) where |S| and | −→ | are

the number of states and transitions, respectively, in a given LTS. The procedure Upda-

www.manaraa.com

91

teCtrlFlowDep considers all possible paths of branches which will result in exponential

complexity. However, the algorithm can be written by memorizing (recording) the set of op-

erations that are possible from every state. In that case, the complexity reduces to that of

backward depth-first traversal.

Algorithm 6 can be also made efficient by memorizing the arguments used for invoking

ReformulateService such that repeated calls with the same arguments are not made. The

exploration of the state-space is done in a depth-first fashion, where at each depth, the com-

plexity is determined by the procedure CreateTransition used for realizing an operation

from the component services. As a result, reformulation does not add to the overall complexity

of the service composition algorithm.

5.4 Discussion

Realizing the full potential of the web as a platform for collaborative construction and de-

ployment of largescale distributed software applications (services) requires effective techniques

for composition of a composite service that realizes a specified functionality using a subset of

available (often independently developed) component services [67, 102, 137]. Barring a few

exceptions [149, 153], most current approaches to service composition [27, 33, 169], adopt a

“single-step request-response” paradigm to service composition: If the composition algorithm

fails to realize a composite service that satisfies the goal service specification using the available

component services, the entire process fails, thereby shifting the responsibility of identifying

the cause(s) for failure of composition as well as modification of the goal specifications to the

service developer. Although our work in Chapter 4 has explored automated methods for iden-

tification of cause(s) of such failure, such approaches require laborious, and hence error-prone

manual reformulation of the goal service specification even in settings where the composition

algorithm fails to “mimic” the structure of the goal service specification using the available

components even though it might be possible to do so using a functionally equivalent reformu-

lation of the goal service specification.

To address this requirement, we have proposed a framework for composing Web services

www.manaraa.com

92

through automatic reformulation of service specifications. We have described an efficient data

structure, in the form of a dependency matrix to support analysis of the the data and control

flow dependencies in goal service LTS specification. We show that any goal LTS reformulation

that does not violate the data and control dependencies that are implicit in the specified goal

service LTS specification is provably functionally equivalent to the specified goal service. We

have described an efficient algorithm that is linear in the size of the goal LTS specification,

and can generate an (as yet untried) alternative that is functionally equivalent to the user-

supplied goal LTS. This process proceeds until a composite service is obtained (i.e., composition

succeeds) or no alternative reformulations remain to be tried. The resulting framework can

help limit in the need for the tedious manual intervention in reformulating specifications by

limiting such interventions to settings where neither the specified goal LTS nor any of its its

functionally equivalent reformulations (that conform to the data and control flow dependencies

implicit in the goal specification) can be realized using the available component services. To the

best of our knowledge, the work presented in this chapter, together with our previous results

in Chapter 4, represent the first and important steps towards failure-based reformulation of

service specifications in Web service composition. The main contributions can be summarized

as follows:

• A characterization of the problem of modeling Web service composition via reformulation

which amounts to automatic alteration of the composition specification without altering

its overall functionality.

• A simple data structure and an algorithm for enabling automatic analysis of control and

data flow dependencies in Web services.

• An end-to-end framework for on-the-fly Web service composition and reformulation of

service specifications based on automata-theoretic approaches that provide formal guar-

antees in terms of soundness and completeness.

Some interesting directions for further research include:

www.manaraa.com

93

1. Consideration of more expressive specifications than those captured by LTSs: Our current

framework represents services using LTSs, which are essentially discrete-event systems.

Some application scenarios require modeling of actions that extend over temporal inter-

vals (e.g, duration of action a spans duration of action b). In this context, interval-based

temporal representations (e.g., temporal algebra introduced by James Allen [9] would be

interesting to explore.

2. Modeling asynchronous communications between services: Our current framework as-

sumes synchronous communication between services. Asynchronous communication be-

tween services [55] requires buffers for managing messages between services. It would be

interesting to explore extending our framework to such a setting.

3. Benchmarks and empirical evaluation: Work in progress is aimed at assessing the extent

to which the our framework eliminates the need for manual intervention in real-world

service composition scenarios, using benchmark service composition by leveraging the

MoSCoE (http://www.moscoe.org) testbed.

http://www.moscoe.org

www.manaraa.com

94

CHAPTER 6. WEB SERVICE SUBSTITUTION

This chapter introduces the problem of Web service substitution and describes in details

our approach to address the problem. The chapter is divided into four sections. The first

section provides background to and describes the problem of Web service substitution. An

illustrative example is described in the second section to explain the salient features of our

proposal, which is discussed in the third section. The fourth section concludes the chapter

with a discussion.

6.1 Introduction and Problem Description

In the earlier chapters (Chapters 4 and 5) of this thesis, we introduced the problems of

Web service composition and specification reformulation, and proposed sound and complete

techniques for addressing the issues concerning those problems. Specifically, our techniques

provide a way to automatically generate composite services either directly from the goal service

specification (represented as a labeled transition system, Definition 3), or in the event of failure

of composition, by attempting to reformulation the specification without changing the “overall”

functional requirements.

However, assembling a composite service that satisfy a desired set of requirements is only

the first step. Ensuring that a composite service, once assembled, can be successfully deployed

presents additional challenges that need to be addressed. Suppose a composite service Q

relies on component/pre-existing services Q1 · · ·Qn. Consider a scenario wherein one of the

component services, say Q1, becomes unavailable either because the service provider for Q1

chooses not to offer it any more or updates it (e.g., by adding/removing some of Q1’s features),

thereby altering its behavior. Consequently, the behavior of the composite service Q that relies

www.manaraa.com

95

on Q1 is also altered. Because assembly of composite services in general is computationally

costly, it is desirable to replace only the affected component(s) e.g. Q1, with an alternative,

say Q
′

1, while ensuring that the resulting composite service Q
′
obtained by replacing Q1 with

Q
′

1 can support (minimally) all of the functionality that was originally offered by Q.

As a result, identifying a component service that can substitute for another service has

become an important problem in service-oriented computing. Of particular interest is the

problem of determining whether a service can be replaced by another service in a specific

context (or property) ϕ, which essentially refers to the functionality of the composition that

must be preserved after the substitution. Previous solutions [25, 45, 117, 120] to this problem

have relied on establishing functional or behavioral equivalence between the service that is

being replaced and the replacement service (see Section 2.3.1 for related work).

We note that the requirement of functional/behavioral equivalence is stronger than that is

often needed in practice for substituting one service with another. Hence, we introduce two

variants of the context-specific service substitutability problem that are based on weaker and

flexible requirements than those assumed by previous approaches [151]. The solution makes

it possible to safely replace a service Q1 with Q
′

1 within the context of a given composition,

even though Q
′

1 may not meet the stronger requirement of being functionally or behaviorally

equivalent to Q1. More precisely, we represent a composition (denoted by ||) of two services

Q1 and Q2 that realizes a specific functionality or property (denoted by ϕ and expressed in

temporal logic) by Q1 || Q2 |= ϕ. In the event Q1 becomes unavailable, the goal is to identify

candidates (Q′
1) that can be used as replacement for Q1 in the environment Q2 and property

ϕ. Similar to our previous work on service composition and specification reformulation, we

represent services in our setting as labeled transition systems (Definition 3) and properties

by mu-calculus [70, 105] formulas, and introduce the notion of quotienting such formulas.

Informally, quotienting can be regarded as “factoring” an existing property ϕ by a system

(Web services in our case), to yield another property ψ (in the same logic as ϕ). We show how

the quotienting technique can be used to identify a substitute for another service within the

specific environment and context of a particular composition in the remainder of this chapter.

www.manaraa.com

96

We begin with an illustrative example in the next section to explain the salient aspects of our

technique.

6.2 Illustrative Example

Consider a setting wherein a traveler is interested in getting information about airline

reservations by interacting with an existing Web service called FunTravel. This service is

composed of two component services namely, TravelSearch (denoted by Q1) and ProfileInfo

(denoted by Q2). Q1 allows its clients to search for flight tickets as well as hotel rooms, whereas

Q2 stores and provides personal profile information (e.g., airline/hotel preferences) of its clients.

An interaction between the client and FunTravel (and the two component services) can be

described as follows: (i) First the client sends a message to Q1 to search for a flight with

required inputs (e.g., email address, departure/arrival cities); (ii) On receipt of the message,

Q1 interacts with Q2 to retrieve client’s profile information (e.g., airline preference); (iii) Once

this information is received, Q1 searches for available flight options, and sends the search

results back to the client. Thus, the functionality (or property denoted by ϕ) realized by this

composition is: given an input for searching flight reservations, the composite service provides

a list of available options (if any). We will show later (Section 6.3.2) how to represent such

properties in temporal logic using mu-calculus formulas.

Similar to our work described in previous chapters, we represent the behavioral description

of the services as labeled transition systems (LTS, see Definition 3). Figures 6.1(a) & 6.1(d)

shows the LTS representation of Q1 and Q2, respectively, whereas Figure 6.1(g) show their

composition (see Definition 6). Note that, it is possible to compose Q1 with Q′
2 (Figure 6.1(e))

and Q′′
2 (Figure 6.1(f)) as well because both Q1 || Q′

2 |= ϕ and Q1 || Q′′
2 |= ϕ.

Now, assume that Q1 becomes unavailable and needs to be substituted. Analyzing the

sample services, it can be noticed that Q′
1 (Figure 6.1(b)), which allows only to search for

flight reservations, can act as a candidate replacement and can be composed with Q2 (i.e.,

the environment) to satisfy the property ϕ. However, it cannot be replaced for all possible

Q2s because, for example, composition of Q′
1 and Q′

2 does not satisfy the required property

www.manaraa.com

97

!i

?a

?h

?c

?d

!b

?c

t
3
t

2
t

4
t

0
t

0 5

6
t

t

!b?a ?c tt
1
t

2
t

30

(a) (b)

!g

?a

?f

?d

?c

?e

!b

?c

t
3
t

2
t

4
t

0
t

0 5

6
t

t

!c ss
10

!d ss
10

(c) (d) (e)

!e

!d

!c

s s
0 1

τ

?a

(?c!c) !b

?h
(?c!c) !iτ

6
t

1
s

1

0
t

0
s

3
t

0
s

1
t

1
s

5
t

1
s

2
t

0
s

4
ts

(h)

(f) (g)

!b

?a

?a
?a!b

2
s

3

1
s

s

0
s

Actions Name

a flightInfo

b flightResult

c userPreference

d frequentFlyerNum

e seatingClass

f rentalCarInfo

g rentalCarResult

h hotelInfo

i hotelResult

(h) (i)

Figure 6.1 LTS representation of Sample Services. (a) Q1. (b) Q′
1. (c)

Q′′
1. (d) Q2. (e) Q′

2. (f) Q′′
2. (g) Composition of Q1 and Q2

(Q1 || Q2). (h) Q3. (i) Action-Name mapping.

www.manaraa.com

98

(since Q′
2 does not provide the user airline preference required by Q′

1). Typically, to identify

a candidate replacement of Q1 for all possible Q2s, it is required that the candidate exhibits

more functionality than Q1. However, if the property ϕ is considered, the condition of substi-

tutability can be relaxed. For example, Q′′
1 (Figure 6.1(c)) can act as a replacement for Q1 for

all possible Q2s since ϕ is satisfied in all the cases. It is worth mentioning that Q1 and Q′′
1 are

not functionally/observationally/simulation equivalent.

6.3 Our Approach

6.3.1 Overview

Based on the above discussion, we introduce two variants to the problem of determining

whether a service can be substituted by another as follows:

Environment-Independent Substitutability. Given a property ϕ, and services Q1 and

Q′
1, can Q′

1 substitute Q1 regardless of the environment of Q1? Formally, for specific Q1, Q
′
1

and ϕ:

∀Q2 : (Q1 || Q2 |= ϕ)
?
⇒ (Q′

1 || Q2 |= ϕ) (6.1)

i.e. can Q′
1 replace Q1 such that, when Q′

1 is composed with any Q2,
1 the resulting composition

realizes ϕ? Observe that we only consider the Q2s where Q1 || Q2 |= ϕ. Compositions with

Q2s for which Q1 || Q2 6|= ϕ (i.e., compositions that do not satisfy a desired property) are not

interesting; the antecedent of the implication is false leading to satisfiability of the formula in

Equation 6.1.

Note that this notion of substitutability is applicable in the setting where it is unknown

apriori the services with whom the substitute (Q′
1) is going to interact, and hence it is useful to

guarantee that the substitute can minimally interact with any service (i.e., the environment)

that can interact with the original (Q1) [45]. A relaxed version of the above problem is where

we consider the substitution only for a particular environment that is known apriori; a problem

that we refer to as environment-dependent substitutability.

1In this case, Q2 becomes the environment.

www.manaraa.com

99

Environment-Dependent Substitutability. Given a property ϕ, and services Q1 and Q′
1,

can Q′
1 substitute Q1 for a specific environment of Q1? I.e., for a particular Q1, Q

′
1, Q2 and ϕ,

does Q1 || Q2 |= ϕ imply Q′
1 || Q2 |= ϕ? Notationally,

(Q1 || Q2 |= ϕ)
?
⇒ (Q′

1 || Q2 |= ϕ) (6.2)

Note that environment-independent substitutability implies environment-dependent sub-

stitutability, but not the other way around. Thus, the solution set for the latter is a superset

of the solution set for the former.

To address the problems defined in Equations 6.1 and 6.2, we will use the technique of

quotienting. As outlined above, quotienting of a property ϕ by Q, denoted by (ϕ/Q), results

in a property ψ (in the same logic as ϕ) which if satisfied by Q′ leads to Q || Q′ |= ϕ. Formally:

∀Q′ : (Q || Q′ |= ϕ) ⇔ (Q′ |= (ϕ/Q))

Quotienting operation, therefore, captures the (temporal) obligation imposed by Q on its

environment (Q′) in order to satisfy ϕ.

Going back to Equation 6.1, the result of (ϕ/Q1) denotes the property that must be satisfied

by all the possible Q2s such that Q1 || Q2 |= ϕ. Similarly, (ϕ/Q′
1) must be satisfied by all the

services (say Q′
2) such that Q′

1 || Q′
2 |= ϕ. Proceeding further, if the set of Q2s is a subset of set

Q′
2s, then in all environments of Q1 where ϕ is satisfied, Q′

1 when placed in those environments

also satisfies ϕ. Therefore, the problem in Equation 6.1 can be reduced to satisfiability (model

checking [70, 105]) of (ϕ/Q1) ⇒ (ϕ/Q′
1).

Next consider the problem in Equation 6.2. Here, (ϕ/Q2) is the property that Q1 satisfies

when Q1 || Q2 |= ϕ. In other words, Q′
1 must also satisfy (ϕ/Q2) in order to be able to

substitute Q1 in the context of Q2 and ϕ. The substitutability problem, therefore, can be

reduced to satisfiability of (ϕ/Q2) by Q′
1. I.e. Solution to Equation 6.2 holds if and only if

Q′
1 |= (ϕ/Q2).

In what follows, we provide a brief introduction to a class of temporal logics called Mu-

Calculus [70] and describe how to model Web service properties (ϕ) using Mu-Calculus.

www.manaraa.com

100

1. [[tt]]e = S

2. [[ff]]e = ∅

3. [[X]]e = e(X)

4. [[ϕ1 ∧ ϕ2]]e = [[ϕ1]]e ∩ [[ϕ2]]e
5. [[ϕ1 ∨ ϕ2]]e = [[ϕ1]]e ∪ [[ϕ2]]e
6. [[〈a〉ϕ]]e = {s | ∃s

a
−→ s′ ∧ s′ ∈ [[ϕ]]e}

7. [[[a]ϕ]]e = {s | ∀s
a

−→ s′ ⇒ s′ ∈ [[ϕ]]e}

8. [[µX.ϕ]]e = fn
X,e

(∅)

9. [[νX.ϕ]]e = fn
X,e

(S)

Table 6.1 Semantics of Mu-Calculus formula

6.3.2 Representing Web Service Properties in Mu-Calculus

Mu-Calculus is an expressive logic with explicit least and greatest fixed point operators for

representing temporal properties. It is more general than logics like LTL (linear temporal logic),

CTL (computation tree logic), CTL∗—properties expressed in these logics can be represented

using mu-calculus.

The syntax of mu-calculus formulas is defined over a set of fixed point variables X and

actions A as follows:

φ→ tt | ff | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | X | σX.φ

where a ∈ A, X ∈ X and σ ∈ {µ, ν}. The 〈.〉 and [.] are modal operators referred to as diamond

and box modalities, respectively. The operator µ is the least fixed point operator while ν is

greatest fixed point operator. The formula of the form σX.ϕ is a fixed point formula where X

is said to be bound by the fixed point operator σ. We will consider formulas that contain only

bound variables. We will write def(X) = σX.ϕ for σX.ϕ.

The semantics of mu-calculus formula ϕ, denoted by [[ϕ]]e is given by the set of states of an

LTS M = (S, s0, A,∆) which satisfies the formula. Here e is a mapping of the form e : X → 2S .

Table 6.1 presents the semantics of mu-calculus formulas using M and e. In the figure, the

propositional constant tt is a satisfied by all states while ff is not satisfied by any state. The

semantics of conjunctive and disjunctive formula expressions are the intersection and the union

www.manaraa.com

101

of the semantics of the conjuncts and disjuncts, respectively. 〈a〉ϕ is satisfied by states which

have at least one a-successor that satisfies ϕ. The dual [a]ϕ is satisfied by the states whose

all a-successors satisfy ϕ. The semantics of fixed point variable X is defined by the mapping

function e. Finally, semantics of least and greatest fixed point formula expressions are defined

using the function f
X,e

(Ŝ) = [[ϕ]]
e[X 7→Ŝ]

where def(X) = σX.ϕ and Ŝ ⊆ S. Here, e[X 7→ S′]

denotes an update to the mapping function such that e[X 7→ S′](Y) = S′ if X = Y and e(Y)

otherwise. It can be immediately shown that fX,e : 2S → 2S is monotonic over the lattice of

subsets of state-set S, i.e. for all S1 ⊆ S2 ⊆ S: fX,e(S1) ⊆ fX,e(S2). Following Tarski-Knaster

theorem [183], the fixed point semantics as n applications of the function f
X,e

where n = |S|.

The semantic-computation of least fixed point starts from the bottom of the subset-lattice ∅

while that of the greatest fixed point proceeds from the top element in the lattice S. We will

use the above semantic definition in the subsequent sections.

We say that an LTS M = (S, s0, A,∆) satisfies a fixed point formula ϕ (M |= ϕ) if and

only if s0 ∈ [[ϕ]]e . Note that, if ϕ only contains bounded fixed point variables then its semantics

is independent of e. We will use s ∈ [[ϕ]] and s |= ϕ interchangeably.

Example 2 Consider the LTS Q2 shown in Figure 6.1(d) where s0 is the start state. We

want to verify whether the M |= ϕ where ϕ is defined as µX.〈!c〉tt ∨ 〈−〉X. We use “-” as a

short-hand to “any” action. The semantic computation proceeds as follows:

fX,e(∅) = [[〈c!〉tt ∨ 〈−〉X]]
e[X 7→∅]

= {s0}

f2
X,e

(∅) = f
X,e

(f
X,e

(∅)) = [[〈!c〉tt ∨ 〈−〉X]]
e[X 7→f

X,e
(∅)]

= [[〈!c〉tt ∨ 〈−〉X]]
e[X 7→{s0}]

= {s0}

The computation can be terminated as fixed point is reached and the semantics is {s0}. The for-

mula is satisfied by states which eventually reach a state that has an “!c” transition. Therefore,

M |= ϕ as s0 |= ϕ.

Consider next a formula νX.[a]ff ∧ [−]X. The set of states in S that satisfies the formula

is {s3}. The formula holds in states whose all reachable states do not have an a transition.

The preceding example contains one fixed point variable, although in general multiple fixed

www.manaraa.com

102

point variables may appear in a formula resulting in a nested fixed point formula. The nesting

depth of the formula is defined by the number of nestings of fixed point formula expressions

present in the formula. We will use nd(ϕ) to denote nesting depth of the formula ϕ.2

Example 3 The formula νX.(µY.(〈?a〉tt∨ 〈−〉Y)∧ [−]X) presents the nesting of a least fixed

point formula inside a greatest fixed point one. It is satisfied by LTS states which can only

reach states where µY.(〈?a〉tt ∨ 〈−〉Y) is satisfied. The states s0, s1 and s2 of LTS in Figure

6.1(h) satisfies this property.

Going back to the example in Figure 6.1, composition ofQ1 andQ2 realizes the functionality

or the property where after the client sends an input message for searching flight reservations

(?a), the composite service eventually provides an output message (!b) with the list of available

options. No other input/output is demanded/provided from/to the client. We will refer to the

required functionality as ϕ which can be represented as:

〈?a〉µX. (〈!b〉tt ∨ 〈τ〉X) (6.3)

The formula represents the behavior where an ?a action is followed by a !b action after

finitely many τ steps, where ?a corresponds to flight input information to be used for search

and !b corresponds to the search results.

6.3.3 Quotienting Mu-Calculus Properties

We now proceed to describe the quotienting of a mu-calculus property (or formula) against

an LTS. Given a formula ϕ and an LTS Q, quotienting (ϕ/Q) results in a formula ψ which

must be satisfied by the environment of Q such that the overall composition satisfies ϕ. Quo-

tienting of ϕ against Q is equivalent to the quotienting of ϕ against s0, the start state of Q.

Such techniques have been used to solve problems in (a) model checking ring protocols [13],

(b) verification of parameterized systems [194] and (c) controller synthesis of discrete event

systems [22]. Each of these techniques define quotienting on the basis of the definition of

2A more general form of nested formula, referred to as alternating fixed point, is one where the inner fixed
point may refer to the formula name defined by the outer fixed point. Refer to [11, 12, 168] for details.

www.manaraa.com

103

composition of two components and with respect to the specific domain being considered. In

particular, [24, 194] introduces quotienting of equational mu-calculus against CCS [130] process

expressions and uses it to analyze compositions containing unbounded number of components.

In [22], on the other hand, quotienting of mu-calculus is used for controller synthesis taking

into consideration the controller-problem specific requirements, e.g. controllability constraint.

The closest to our notion of quotienting is the work by Andersen [13] where synchronous

composition of LTSs is used to quotient equational mu-calculus formulas.

We will define the quotienting function (ϕ/T,Rs) as / : Φ × S ×R× T → Φ where ϕ ∈ Φ,

s ∈ S of an LTS Q, R ∈ R is the restricted action set (the actions on which Q must synchronize

with its environment) and T ∈ T is a tag set. The tag set contains elements of the form Xs
i

where X is a fixed point variable in ϕ, s ∈ S and i is an integer. The tag set is necessary to

ensure termination of the recursive quotienting. The result of (ϕ/
T,R
s) is another mu-calculus

formula that must be satisfied by the environment state t such that (s, t) |= ϕ under the

restriction R.

Figure 6.2 presents the quotienting function. Each rule follows from the semantics of mu-

calculus formula expression described in Table 6.1. Rule 1 states that any environment state

when composed with s can satisfy tt while Rule 2 states that there is no environment state

that can be composed with s to satisfy ff.

Rules 3 and 4 follow from the fact that semantics of conjunctive and disjunctive formulas

are intersection and union of the semantics of conjuncts and disjuncts, respectively.

Rule 5 handles quotienting of diamond modal formula expressions. There are three possible

cases by which (s, t), where t is the environment state composed with s, can satisfy 〈a〉ϕ. Each

case leads a separate disjunct in the result of quotienting:

• t can make a move on a to t′ such that (s, t′) satisfies ϕ. This is represented by the

first disjunct where the environment state (in this case t) is left with the obligation to

satisfy the diamond modality 〈a〉 and at least one its a-successor must satisfy the result

of (ϕ/
T,R
s).

• The second case corresponds to the case when a = τ and there exists transitions from s

www.manaraa.com

104

1. (tt/
T,R
s) = tt

2. (ff/
T,R
s) = ff.

3. (ϕ1 ∧ ϕ2/T,R
s) = (ϕ1/T,R

s) ∧ (ϕ2/T,R
s).

4. (ϕ1 ∨ ϕ2/T,R
s) = (ϕ1/T,R

s) ∨ (ϕ2/T,R
s).

5. (〈a〉ϕ/T,Rs) = 〈a〉(ϕ/T,Rs)

∨



















(
∨

s′:s
c

−→s′
〈b〉(ϕ/

T
s′)

)

if a = τ ∧ ∃s′ : s
c

−→ s′

∧ inv(b, c) ∧ b, c ∈ R

ff otherwise

∨











(
∨

s′:s
a

−→s′
(ϕ/

T
s′)

)

if ∃s′ : s
a

−→ s′ ∧ a 6∈ R

ff otherwise

6. ([a]ϕ/
T,R
s) = [a](ϕ/

T,R
s)

∧



















(
∧

s′:s
c

−→s′
[b](ϕ/

T
s′)

)

if a = τ ∧ ∃s′ : s
c

−→ s′

∧ inv(b, c) ∧ b, c ∈ R

tt otherwise

∧











(
∧

s′:s
a

−→s′
(ϕ/

T
s′)

)

if ∃s′ : s
a

−→ s′ ∧ a 6∈ R

tt otherwise

7. (σX.ϕx/T,Rs) =















σXs
i .(ϕx/T∪{Xs

i
},R
s) if Xs

i 6∈ T

σXs
i+1.(ϕx/T [Xs

i
/Xs

i+1
],R
s)

otherwise

8. (X/T,Rs) =











Xs
i if Xs

i ∈ T

(σX.ϕx/T,Rs) otherwise

where def(X) = σX.ϕx

Figure 6.2 Quotienting Rules

www.manaraa.com

105

and t on which they can synchronize and move to s′ and t′, respectively, such that (s′, t′)

satisfies ϕ. This case represents the situation when both s and t makes a synchronous

move. As such the second disjunct in quotienting imposes on the environment to satisfy

at least one diamond modal obligation 〈b〉 when s has a c-successor and b and c are

inverse of each other. Further, b and c must be present in the restricted set.

• Finally, the state s can satisfy the diamond obligation 〈a〉. This case corresponds to the

situation when s makes a move on a while t remains idle.

Note that quotienting automatically handles the possible non-determinism at the state s by

considering disjunction over the all the relevant outgoing transitions. The Rule 6 is the dual

of Rule 5 and can be similarly explained.

Rules 7 and 8 represent the quotienting of fixed point formula expressions and fixed point

formula variables. The rules closely follow the fixed point semantics as presented in Sec-

tion 6.3.2. Consider (σX.ϕ/
T,R
s). Recall that (s, t) belongs to the semantics of σX.ϕ if it

belongs to the semantics of ϕ. Quotienting σX.ϕ results in a new formula over fixed point

variable Xs
i (case 1 of Rule 7). The new variable Xs

i is added to the tag set T . Case 2 in

Rule 7 states that if Xs
i is already present in the tag set denoting that σX.ϕ has already been

quotiented against s (i times), then a new formula variable Xs
i+1 is used and the tag set is

appropriately updated; T [Xs
i /X

s
i+1] means that Xs

i is replaced by Xs
i+1 in T .

The new formula generated from quotienting ϕ against s may lead to quotienting X against

s. The situation corresponds to the case where (s, t) ∈ [[σX.ϕ]]e when (s, t) ∈ e(X). As such,

quotienting ofX against s is equal toXs
i (the last fixed point variable resulting from quotienting

of σX.ϕ against s). This is shown in Rule 8, case 1. On the other hand, if quotienting ϕ

against s leads to quotienting X against s′ where s′ has not be used to quotient σX.ϕ before,

the situation corresponds to the case where (s, t) ∈ [[σX.ϕ]]e when (s′, t′) ∈ e(X). Furthermore,

since s′ has not been used to quotient σX.ϕ, it implies that (s′, t′) ∈ e(X) can only occur if

(s, t) ∈ fk
X,e

(Ŝ) and (s′, t′) ∈ fk−1
X,e

(Ŝ). This leads to case 2 in Rule 8 where X is replaced by its

definition and quotiented against the state (s′ in the above example case) under consideration.

www.manaraa.com

106

(ϕ/
∅,R
Q1)

= (〈a?〉µX.(〈b!〉tt ∨ 〈τ〉X))/t0
= (〈a?〉µXt0

1 .(〈b!〉tt ∨ 〈τ〉Xt0
1)) ∨ ϕ

X
t1
1

Rules 5, 1

ϕ
X

t1
1

= µXt1
1 .(〈b!〉tt ∨ 〈c!〉ϕ

X
t3
1

∨ 〈d!〉ϕ
X

t3
1

∨ 〈τ〉Xt1
1) Rules 7, 5, 4, 1

ϕ
X

t3
1

= µXt3
1 .(tt) Rules 7, 5, 1

(i)

(ϕ/
∅,R
Q′′

1)

= (〈a?〉µX.(〈b!〉tt ∨ 〈τ〉X))/t0
= (〈a?〉µXt0

1 .(〈b!〉tt ∨ 〈τ〉Xt0
1)) ∨ ϕ

X
t1
1

Rules 5, 1

ϕ
X

t1
1

= µXt1
1 .(〈b!〉tt ∨ 〈c!〉ϕ

X
t3
1

∨ 〈d!〉ϕ
X

t3
1

∨ 〈e!〉ϕ
X

t3
1

Rules 7, 5, 4, 1

∨〈τ〉Xt1
1)

ϕ
X

t3
1

= µXt3
1 .(tt) Rules 7, 5, 1

(ii)

Figure 6.3 Results of quotienting ϕ (Equation 6.3) by: (i) Q1 (Fig-

ure 6.1(a)) and (ii) Q′′
1 (Figure 6.1(c))

Theorem 4 states that the expression ϕ, with a nesting depth of nd(ϕ), can be at most

quotiented |S|nd(ϕ) times by a particular state.

Example 4 Consider the sample services Q1 and Q′′
1 in Figure 6.1(a, c) and the mu-calculus

formula ϕ in Equation 6.3. The goal is to verify whether Q′′
1 can substitute Q1 for all possible

Q2s in Figure 6.1(d, e, f) in the context of ϕ. The results, ψ = (ϕ/
∅,R
Q1) and ψ′′ = (ϕ/

∅,R
Q′′

1),

are shown in Figure 6.3 where R = {?c, !c, ?d, !d}. Note that quotienting by Q′′
1 generates a

formula ψ′′ which is same as ψ, implying that ψ ⇒ ψ′′ is satisfiable, i.e. Q1 can be indeed

substituted by Q′′
1 in the context of ϕ for all possible environments Q2s.

6.3.4 Substitutability of Web services

We now proceed to show that the environment-independent and environment-dependent

variants of the service substitutability problem introduced in Section 6.3.1 (Equations 6.1 and

www.manaraa.com

107

6.2) can be reduced to mu-calculus satisfiability using the notion of quotienting presented

above.

6.3.4.1 Environment-Independent Substitutability

In this case, the problem is to determine whether Q′
1 can replace Q1 for all possible envi-

ronments Q2s for which Q1 || Q2 |= ϕ (Equation 6.1). Thus, the property to be satisfied by all

Q2s, such that Q1 || Q2 |= ϕ, is (ϕ/
∅,R
Q1). Similarly, the obligation on possible environments

of Q′
1 (say Q′

2s) is (ϕ/
∅,R
Q′

1).

If the set of Q2s is a subset of Q′
2s, then the following holds:

∀Q2 : (Q1 || Q2)\R |= ϕ ⇔ Q2 |= (ϕ/
∅,R
Q1)

⇒ Q2 |= (ϕ/
∅,R
Q′

1)

⇔ (Q′
1 || Q2)\R |= ϕ

The environment-independent substitutability is, therefore, reduced to satisfiability of (ϕ/
∅,R
Q1) ⇒

(ϕ/
∅,R
Q′

1).

6.3.4.2 Environment-Dependent Substitutability

Assume that the composition of services Q1 and Q2 under the restriction R realizes the

functionality described by the mu-calculus formula ϕ: (Q1 || Q2)\R |= ϕ. In the event it

is required to replace Q1 by Q′
1, it suffices to verify whether Q′

1 satisfies (ϕ/
∅,R
Q2). The

verification of Q′
1 |= (ϕ/

∅,R
Q2) can be done using mu-calculus model checkers which takes as

input the mu-calculus formula, LTS and returns true or false depending on whether the LTS

satisfies the formula or not (using semantics of mu-calculus as described in Section 6.3.2). If

the Q′
1 satisfies (ϕ/

∅,R
Q2), it follows that (Q′

1 || Q2)\R |= ϕ. Therefore, Q′
1 can replace Q1 in

the environment in which Q1 is composed with Q2 to satisfy ϕ (Equation 6.2).

6.3.4.3 Mu-Calculus Satisfiability

Satisfiability of mu-calculus formula is performed by reducing the problem to emptiness

problem of alternating tree automata [71] or identifying the winning strategy in a parity game

www.manaraa.com

108

[18, 22, 182]. Details of the technique are beyond the scope of this thesis. At a high-level, these

techniques determines the satisfiability of mu-calculus formula on the basis of satisfiability of

its subformulas and take special care to handle fixed point satisfiability. The complexity of

satisfiability checking, is therefore, exponential to the number of subformulas of the formula

under consideration.

6.3.5 Theoretical Analysis

Theorem 4 (Quotienting & Nesting Depth) Given a fixed point expression ϕ in mu-calculus,

the number of times the expression is quotiented by a state has an upper bound of |S|nd(ϕ),

where nd(ϕ) is the nesting depth of formula ϕ.

Proof Sketch: For nd(ϕ) = 1, the proof of the above statement is trivial since for a formula

expression of the form σX.ϕx, ϕ is quotiented at most |S| times (see Rules 7 and 8). Next

consider the case, where σX.ϕx and σY.ϕy are two subformulas in ϕ with the former being

the outer formula expression. Furthermore, let X be a subformula of ϕy. Quotienting σX.ϕx

against s may lead to quotienting σY.ϕy against s which in turn may lead to quotienting X

against s′. According to Rule 8, quotienting X against s′ is defined as quotienting σX.ϕx

against s′. This may again lead to quotienting σY.ϕy against s. As there are |S| states, the

number of times σY.ϕy can quotiented by the same state s is of the order O(|S|). Proceeding

further, the number of times σY.ϕy is quotiented by any state is, therefore, O(|S|2). For the

general case, let g(n) be the number of times a fixed point expression in ϕ is quotiented by

any state when nd(ϕ) = n. Now, let us construct a new formula expression σZ.ϕz such that ϕ

is a subformula of ϕz and Z is a subformula in ϕ. That is, the nesting depth of σZ.ϕz is n+ 1

and σZ.ϕz can be quotiented by every state in the LTS such that, for each such quotienting

operation, the inner formula ϕ will be quotiented g(n) times (induction hypothesis). Therefore,

the total number of times a formula in σZ.ϕz is quotiented against any state is |S| × g(n), i.e.

g(n + 1) = |S| × g(n). Proceeding further, ∀i ≥ 1.g(i) = |S|i.

Theorem 5 (Soundness & Completeness) Given Q1 = (S1, s01, A1, ∆1), Q2 = (S2, s02,

www.manaraa.com

109

A2, ∆2), the restriction set R and a mu-calculus formula ϕ, the following holds:

((Q1 || Q2)\R |= ϕ) ⇔ (Q2 |= (ϕ/
∅,R
Q1))

Proof: The proof follows from the discussion in Sections 6.3.2 and 6.3.3.

Complexity of Quotienting. The complexity of quotienting operation can be derived from

the size of the result of the quotient. Given a formula ϕ and the set of states S against which

it is quotiented, the number of times each subformula in ϕ is quotiented by each state in S is

|S|nd(ϕ) (see above) which is also the nesting depth of the resultant quotient. Next, observe

that the Rules 5 and 6 considers all (matching) outgoing transitions of the participating state

and generates modal obligation following the transitions. As such, the size of the quotient is

amplified by a factor of B where B is the maximum branching factor of the LTS. The overall

size of the quotient is O(|ϕ| × |S|nd(ϕ) ×B), where |ϕ| is the size of ϕ.

Complexity of Substitutability. Recall that, quotienting ϕ against an LTS containing set

of states S results in a formula (say ψ) of size O(|ϕ| × |S|nd(ϕ) ×B) and nesting depth |S|nd(ϕ)

(see above). Complexity of satisfiability of ψ is exponential to the number of subformulas in

ψ. Note that at each nesting depth in ψ the number of subformulas is O(|ϕ| × B); therefore

the complexity for satisfiability checking is O(|S|nd × 2|ϕ|×B).

For Q1, determining whether Q′
1 can replace Q1 in an environment independent fashion in

the context of ϕ, has the complexity O(max(|S1|
nd(ϕ), |S′

1|
nd(ϕ))×2|ϕ|×max(B1,B′

1)) where S1, B1

and S′
1, B

′
1 are set of states and maximum branching factors of Q1 and Q′

1, respectively.

6.4 Discussion

Determining substitutability of a service with another is an important problem in service-

oriented computing. In this chapter, we focus on the problem of context-specific service

substitution which requires that some desired property ϕ of the component being replaced

is maintained despite its substitution by another component. We introduce two variants

www.manaraa.com

110

of the context-specific service substitutability problem, namely, environment-dependent and

environment-independent substitutability that relax the requirements for substitutability rel-

ative to simulation or observational equivalence between services. The proposed solution to

these two problems is based on the well-studied notion of “quotienting” which is used to iden-

tify the obligation of the environment of a service being replaced in a specific context. We

demonstrate that both environment-dependent and environment-independent service substi-

tutability problems can be reduced to quotienting of ϕ against the service being replaced and

the replacement service and hence, to satisfiability of the corresponding mu-calculus formu-

lae. The correctness of our technique follows from the correctness of the individual steps of

quotienting and satisfiability.

In the current setting, we did not take into consideration the data parameters, i.e. messages

being exchanged by the services. In our work on composition (Chapter 4), we have discussed

equivalence between services where the communication paradigm includes messages that can

potentially have an infinite domain. Thus, investigation of quotienting-based approach to

context-specific substitutability to the setting of message-based communication is required.

One possibility is to explore the applicability of value-passing LTS/CCS and more powerful

value-passing mu-calculus [194]. Furthermore, similar to our approach on composition, we

assumed synchronous communication between the services. Hence, consideration of services

which communicate asynchronously [55] and analysis for substitutability in such a setting is a

topic of potential research. In addition to the above, adopting this work into a more dynamic

setting where services can be replaced at runtime by automatic re-composition that takes into

consideration not only the functional, but also the non-functional requirements for substitution,

will enable realization of a complete end-to-end solution for Web service substitution. Finally,

an interesting aspect that deserves further research is analyzing failure of substitution, i.e.,

what action can be taken when an existing service cannot be replaced by another.

www.manaraa.com

111

CHAPTER 7. SEMANTIC INTEROPERABILITY

This chapter introduces the problem of semantic interoperability in service-oriented com-

puting and describes in details our approach to address some aspects of the problem. The

chapter is divided into four sections. The first section provides background to and describes

the semantic interoperability problem. Preliminaries on ontologies and inter-ontology map-

pings is described in the second section to explain the salient features of our proposal, which

is discussed in the third section. The fourth section concludes the chapter with a discussion.

7.1 Introduction and Problem Description

The work on service composition (Chapter 4), specification reformulation (Chapter 5),

and substitution (Chapter 6) presented in this thesis so far makes an assumption that the

vocabulary used to represent the services is uniform throughout. That is, there is no syntactic

and/or semantic inconsistency between the various messages, message types, action names,

and so on between the services that are being analyzed for composition, reformulation and

substitution. However, it is unrealistic to expect such syntactic and semantic consistency

across independently developed service libraries. Each such library is typically based on an

implicit ontology [88], which reflects the assumptions concerning the objects that exist in the

world, the properties or attributes of the objects, the possible values of attributes, and their

intended meaning from the point of view of the creators of the services in question. Because the

services that are created for use in one context often find use in other contexts or applications,

syntactic and semantic differences between independently developed services are unavoidable.

For example, consider a composition comprising of two simple component services: F-

Sensor and Weather Description, as shown in Figure 7.1. The objective of this composite

www.manaraa.com

112

F-Sensor
 Weather

Description

Input Signals / Bit

Streams

Temperature

(in F)

Temperature

(in F)

Hot

Warm

Cold

If (temperature > 80) then Hot

if (50 < temperature < 80) then Warm

if (temperature < 50) then cold

Figure 7.1 Weather Description with F-Sensor

service is to determine whether the day is hot, or warm or cold based upon the temperature.

The input to the F-Sensor component consists of signals from one or more sensors and its

output is the current temperature (in degree F) and the input to the Weather Description

component is the current temperature (in degree F from the output of F-Sensor component)

and its output is a description of the day (hot or warm or cold). Note that in this example,

the output produced by the F-Sensor component has the same semantics as the input of the

Weather Description component; furthermore, the name Temperature used in the vocabulary

associated with the F-Sensor component has the same meaning as the term Temperature in the

vocabulary associated with the Weather Description component. In the absence of syntactic

or semantic mismatches between the components, their composition is straightforward.

Now, consider the scenario where we replace the F-Sensor component with a new compo-

nent: C-Sensor. Suppose C-Sensor behaves very much like F-Sensor except that it outputs the

temperature, denoted by Temp, and measured in degree Centigrade instead of degree Fahren-

heit. Now we can no longer compose C-Sensor and Weather-Description components because

of the syntactic and semantic differences between the two components. Effective use of inde-

pendently developed components in a given context requires reconciliation of such syntactic

and semantic differences between them. Because of the need to define compositions in different

application contexts in terms of vocabulary familiar to users of the composite service, there is

no single privileged ontology that will serve all users, or for that matter, even a single user, in

all context.

A similar argument also applies in the case of discovering and executing component services

www.manaraa.com

113

where differences in semantics can lead to unprecedented failures.

Consequently, there is a need to overcome this major hurdle in the reuse of independently

developed services in new applications that arise from the semantic differences between the ser-

vices. Towards this end, realizing the vision of the Semantic Web [34], i.e., supporting seamless

access and use of information sources and services on the Web, we build on recent develop-

ments in ontology-based solutions on information integration [58, 171] to develop principled

solutions to addressing the semantic interoperability problem in service-oriented computing.

Specifically, we introduce ontology-extended components and mappings between ontologies to

facilitate discovery [158] and composition [156] of semantically heterogeneous component ser-

vices.

We begin by providing background on ontologies and mappings between ontologies in the

next section.

7.2 Ontologies and Mappings

An ontology is a specification of objects, categories, properties and relationships used to

conceptualize some domain of interest. In what follows, we introduce a precise definition of

ontologies.

Definition 10 (Hierarchy [43]) Let S be a partially ordered set under ordering ≤. We say

that an ordering � defines a hierarchy for S if the following three conditions are satisfied:

(1) x � y → x ≤ y; ∀ x, y ∈ S. We say (S, �) is better than (S, ≤)),

(2) (S, ≤) is the reflexive, transitive closure of (S, �),

(3) No other ordering v satisfies (1) and (2).

For example, let S = {Weather, Wind, WindSpeed}. We can define the partial ordering ≤ on S

according to the part-of relationship. For example, Wind is part of the Weather characteristics,

WindSpeed is part of the Weather characteristics, and WindSpeed is also part of Wind charac-

teristics. Besides, everything is part of itself. Thus, (S, ≤) = {(Weather, Weather), (Wind,

www.manaraa.com

114

Weather

Temperature
 Wind
 Humidity
 Outlook

WindSpeed
 Cloudy
 Sunny
 Rainy

Ontology O
1

Figure 7.2 Weather Ontology of Company K1

Wind), (WindSpeed, WindSpeed), (Wind, Weather), (WindSpeed, Weather), (WindSpeed, Wind)}.

The reflexive, transitive closure of ≤ is the set: (S, �) = {(Wind, Weather), (WindSpeed,

Wind)}, which is the only hierarchy associated with (S, ≤).

Definition 11 (Ontologies [43]) Let ∆ be a finite set of strings that can be used to define

hierarchies for a set of terms S. For example, ∆ may contain strings like is-a, part-of cor-

responding to is-a or part-of relationships, respectively. An Ontology O over the terms in S

with respect to the partial orderings contained in ∆ is a mapping Θ from ∆ to hierarchies in

S defined according to the orderings in ∆. In other words, an ontology associates orderings

to their corresponding hierarchies. Thus, if part-of ∈ ∆, then Θ(part-of) will be the part-of

hierarchy associated with the set of terms in S.

For example, suppose a company K1 records information about weather in some region of inter-

est (see Figure 7.2). FromK1’s viewpoint, weather is described by the attributes Temperature,

Wind, Humidity and Outlook which are related to weather by part-of relationship. As-

sume that Wind is described by WindSpeed. The values Cloudy, Sunny, Rainy are related

to Outlook by the is-a relationship. In the case of a measurement (e.g., Temperature,

WindSpeed) a unit of measurement is also specified by the ontology. In K1’s ontology, O1,

Temperature is measured in degrees Fahrenheit and the WindSpeed is measured in miles per

hour. For contrast, an alternative ontology of weather O2 from the viewpoint of a company

K2 is shown in Figure 7.3.

www.manaraa.com

115

Weather

Temp
 Wind
 Humidity
 Prec

WindSpeed

HeavyRain
 LightRain

Ontology O
 2

WindDir

Rain

NoPrec

Snow

LightSnow
HeavySnow

Figure 7.3 Weather Ontology of Company K2

Suppose O1,...,On are ontologies associated with components C1,...,Cn, respectively. In

order to compose such semantically heterogeneous components, the user (i.e., the service de-

veloper) needs to specify the mappings between these ontologies of the various components. For

example, a company K3, with ontology O3 uses meteorology components supplied by K1 and

K2. Suppose in O3, Weather is described by Temperature (measured in degrees Fahrenheit),

WindSpeed (measured in mph), Humidity and Outlook. Then, K3 will have to specify a suit-

able mapping MO1 7→O3 from K1 to K3 and a mapping MO2 7→O3 from K2 to K3. For example,

Temperature in O1 and Temp in O2 may be mapped by MO1 7→O3 and MO2 7→O3 respectively to

Temperature in O3. In addition, conversion functions to perform unit conversions (e.g. Temp

values in O2 from degrees Centigrade to degrees Fahrenheit) can also be specified. Suppose

K3 considers Precipitation in O2 is equivalent to Outlook in O3 and maps Rain in O2 to

Rainy in O3. This would implicitly map both LightRain and HeavyRain in O2 to Rainy in

O3. These mappings between ontologies are specified through interoperation constraints.

Definition 12 (Interoperation Constraints [43, 58]) Let (H1, �1) and (H2, �2), be any

two hierarchies. We call set of Interoperation Constraints (IC) the set of relationships that

exists between elements from two different hierarchies. For two elements, x ∈ H1 and y ∈ H2,

we can have one of the following Interoperation Constraints:

• x : H1 = y : H2

• x : H1 6= y : H2

www.manaraa.com

116

• x : H1 ≤ y : H2

• x : H1 6≤ y : H2

For example, in the weather domain, if we consider part-of hierarchies associated with the

companies K1 and K2, we have the following interoperation constraints: Temperature : 1 =

Temp : 2, Outlook : 1 = Prec : 2, Humidity : 1 6= Wind : 2, WindDir : 2 6≤ Wind : 1, and so

on.

Definition 13 (Type, Domain, Values) We define T = {τ | τ is a string} to be a set of

types. For each type τ , D(τ) = {v|v is a value of type τ} is called the domain of τ . The

members of D(τ) are called values of type τ . For instance, a type τ could be a predefined type,

e.g. int or string or it can be a type like USD (US Dollars) or kmph (kilometers per hour).

Definition 14 (Type Conversion Function) We say that a total function f(τ1, τ2): D(τ1) 7→

D(τ2) that maps the values of τ1 to values of τ2 is a type conversion function from τ1 to τ2.

The set of all type conversion functions satisfy the following constraints:

• For every two types τ i, τ j ∈ T, there exists at most one conversion function f(τi, τj).

• For every type τ ∈ T, f(τ, τ) exits. This is the identity function.

• If f(τi, τj) and f(τj, τk) exist, then f(τi, τk) exists and f(τi, τk) = f(τi, τj) ◦ f(τj, τk) is

called a composition function.

7.3 Our Approach

Based on the definitions described above, we outline our approach for discovering (Section

7.3.1) and composing (Section 7.3.2) semantically heterogeneous component services in the

following sections.

www.manaraa.com

117

7.3.1 Ontology-based Service Discovery

Service discovery is the problem of finding suitable service(s) that satisfy functional and/or

non-functional requirements of a user. Typically, in a Service-Oriented Architecture (SOA),

there exists a directory in which service providers can advertise their services in a form that

enables potential clients to find and invoke them over the Internet. The notion of Semantic

Web services [124] takes us one step closer to interoperability of autonomously developed

and deployed services, where a software agent or application can dynamically find and bind

services without having a priori hard-wired knowledge about how to discover and invoke them.

OWL-S [4] is a specific OWL [3] ontology designed to provide a framework for semantically

describing such services from several perspectives (e.g., discovery, invocation, composition).

During the development of a service, the abstract procedural concepts provided by OWL-

S ontology can be used along with the domain specific OWL ontologies which provide the

terms, concepts, and relationships used to describe various service properties (i.e., Inputs,

Outputs, Preconditions, Effects or IOPE’s). In general, ontology-based matchmaking is used

to discover and invoke service providers against a specific service request [115, 140]. However,

the existing techniques either do not consider the ontologies used to describe the services to be

semantically heterogeneous or do not provide the support for consideration of both functional

and non-functional requirements for service discovery.

To address these limitations, we propose a technique [158] that allows the users to spec-

ify context-specific semantic correspondences between multiple ontologies to resolve semantic

differences between them. These correspondences are used for selecting services based on the

user’s functional and non-functional requirements, which are then ranked based on a user-

specified criteria. In particular, our technique comprises of two main steps:

• specifying mappings between the terms and concepts of the user ontologies and the

domain ontologies (which are used to describe the services).

• specifying a service selection criteria which uses the mappings to select candidate service

providers against a service request query and rank/order them based on user-specified

www.manaraa.com

118

ranking criteria.

For the sake of simplicity, we assume that inter-ontology mappings and correspondences (Defi-

nition 12) can be specified by a domain expert using existing tools such as INDUS [147]. Once

the mappings are provided, the objective is to specify a suitable service selection criteria, which

in our technique comprises to two aspects: Selection of the service providers and then, Ranking

the selected providers.

7.3.1.1 Service Selection

The first step in service selection is to determine a set of service providers which offer the

requested functionality. We call this set as candidate service providers.

Definition 15 (Candidate Service Providers) Let S = {S1,· · ·, Sn} denote the set of ser-

vices which are available (or registered with our system). We call, S′ ⊆ S, the set of candidate

providers, if they meet the requested functional properties of the user (in terms of IOPE’s).

In general, some services will match all the requested IOPE parameters, while others will not.

To distinguish between them, we categorize them based on the degree of match [115, 140]:

Exact, Plug-in, Subsumption, Intersection, and Disjoint. Such a categorization also provides

an (implicit) ranking amongst the potential providers (e.g., Exact match is given the highest

rank). Since, the set of services which fall under Intersection and Disjoint categories do not

match the service request (in terms of functional aspects), we ignore them for the rest of the

service selection process and only consider the services which belong to Exact, Plug-in and

Subsumption categories.

The second step in the service selection process further refines the set of candidate service

providers based on user-specified non-functional attributes, namely Quality of Service (QoS).

In unison with [166], we define Quality of Service as a set of non-functional attributes that

may impact the service quality offered by a Web service. Because, Web services are distributed

as well as autonomous by their very nature, and can be invoked dynamically by third parties

over the Internet, their QoS can vary greatly. Thus, it is vital to have an infrastructure

www.manaraa.com

119

which takes into account the QoS provided by the service provider and the QoS desired by the

service requester, and ultimately find the (best possible) match between the two during service

discovery.

However, different aspects of QoS might be important in different applications and dif-

ferent classes of web services might use different sets of non-functional attributes to specify

their QoS properties. For example, bits per second may be an important QoS criterion for

a service which provides online streaming multimedia, as opposed to, security for a service

which provides online banking. As a result, we categorize them into: domain dependent and

domain independent attributes. As an example, Figure 7.4 shows the taxonomy that captures

the QoS properties of those restaurant Web services which provide home delivery. The domain-

independent attributes represent those QoS characteristics which are not specific to any partic-

ular service (or a community of services). Examples include Scalability, Availability etc.

A detailed list and explanation about such attributes can be found in [166]. On the other hand,

the domain-dependent attributes capture those QoS properties which are specific to a partic-

ular domain. For example, the attributes OverallRestaurantRating, PresentationDecor

etc. shown in Figure 7.4 correspond to the restaurant domain. As a result, the overall QoS

taxonomy is flexible and enhanceable as different service providers (or communities) can define

QoS attributes corresponding to their domain.

Class

QualityOfService

Class

DomainIndependent

Class

DomainDependent

subClassOf
 subClassOf

Class

Scalability

Class

Availability

Class

Performance

subClassOf

subClassOf

subClassOf

Class

Throughput

Class

Latency

subClassOf
subClassOf

Class

OverallRestaurantRating

Class

PresentationDecor

subClassOf

subClassOf

Figure 7.4 Sample QoS Taxonomy

www.manaraa.com

120

However, in certain cases, a user might consider some non-functional attributes valuable for

his/her purpose (and hence, defined in the user ontology), instead of all the attributes in the

QoS taxonomy (Figure 7.4). We use those attributes to compose a quality vector comprising

of their values for each candidate service. These quality vectors are used to derive a quality

matrix, Q.

Definition 16 (Quality Matrix) A quality matrix, Q = {V (Qij); 1 ≤ i ≤ m; 1 ≤ j ≤ n},

refers to a collection of quality attribute-values for a set of candidate services, such that, each

row of the matrix corresponds to the value of a particular QoS attribute (in which the user is

interested) and each column refers to a particular candidate service. In other words, V (Qij),

represents the value of the ith QoS attribute for the jth candidate service. These values are

obtained from the profile of the candidate service providers and mapped to a scale between 0 & 1

by applying standard mathematical maximization and minimization formulas based on whether

the attribute is positive or negative. For example, the values for the attributes Latency and

Fault Rate needs to be minimized, whereas Availability needs to be maximized.

In addition to the above, to give relative importance to the various attributes, the users can

specify a weight value for each attribute, which are used along with the QoS attribute values to

give relative scores to each candidate service using an additive value function, fQoS. Formally,

fQoS(Servicej) =

m
∑

i=1

(V (Qij) × Weighti) (7.1)

where, m is the number of QoS attributes in Q.

For a particular service request query, our technique selects one or more services which

satisfies user’s constraints (in terms of IOPE’s) and has an overall score (for the non-functional

attributes) greater than some threshold value specified by the user. If several services satisfy

these constraints, then they would be ranked according to the user-specified ranking criteria

(Section 7.3.1.2). But, if no service exist, then an exception is raised and the user is notified

appropriately. For example, let S = {S1, S2, S3} be the set of candidate service providers which

match the requested IOPE’s. Assuming, that the user is interested in attributes Scalability

www.manaraa.com

121

and Availability, let the quality matrix be:

Q =













S1 S2 S3

Scalability 0.90 0.80 0.30

Availability 0.90 0.45 0.20













Further assuming that, the user specifies WeightScalability = 0.80, WeightAvailability

= 0.50, and threshold score value, UThreshold = 0.50, only S1 and S2 will be selected (after

calculation of their respective fQoS scores).

7.3.1.2 Service Ranking

In a real world scenario, given a service request, it is conceivable that there exist scores

of service providers, which not only satisfy the functional requirements of the requester, but

also the non-functional requirements. As a result, it is of vital importance to let the requesters

specify some ranking criteria (as part of the service request query), which would rank the

retrieved results (i.e., the list of potential service providers). The traditional approach for

ranking the results of matchmaking is completely based on the degree of match [115, 140]

between the profiles of the service requester and service provider. In our framework also, we

use degree of match to categorize (and implicitly order) the set of candidate service providers

based on the functional requirements of the user. We further refine each category and select

only those candidate service providers which satisfy the non-functional requirements of the

user.

Although this is beneficial, we believe the requester should have additional capabilities

to specify personalized ranking criteria as part of the service request query. For example,

restaurants which may not have the highest quality ratings for food tastiness, but provide

speedier home delivery, may be of higher value for a person who is in hurry (and hence wants

faster food delivery), compared to a food connoisseur, who will have a preference for tastier

food. As a result, the former user would want to rank the candidate service providers based

on their promptness of delivery, whereas the later would prefer to have the service providers

ranked based on the quality of food they serve.

www.manaraa.com

122

To achieve this, we introduce the notion of ranking attributes and a ranking function (based

on those attributes), which will be used to rank the selected candidate service providers. Once

the service providers are ranked, it is left at user’s discretion to select the most suitable provider

(e.g., the user may do some trade off between the services which meet all the non-functional

requirements, but not all the functional requirements exactly).

Definition 17 (Ranking Attributes) The set of ranking attributes, RA, comprises of all

the concepts (its sub-concepts, properties) in the domain QoS taxonomy which have correspon-

dences (via interoperation constraints) to the concepts in the user ontology, OU , that capture

the non-functional aspects/requirements of the user. For example, if OU has a QoS concept

ServicePerformance which has a correspondence to the concept Performance in the domain

QoS taxonomy (Figure 7.4), then {Performance, Throughput, Latency} ∈ RA.

Definition 18 (Ranking Function) Let S represent the set of candidate services which match

the functional and non-functional requirements of the user, x ∈ RA is the ranking attribute,

and RO ∈ {ascending, descending} is the ranking order, then: fRank(S, x,RO) = S′, is called

the ranking function, which produces S′, the ordered set of candidate services. For example,

let S = {S1, S2} be the set of services selected based on the desired QoS properties (from the

previous section/example), x = {Cost}, and, RO = {ascending}. Assuming, Cost of S1 is

more than S2, we have, fRank(S, x,RO) = {S2, S1} = S′.

7.3.2 Ontology-based Service Composition

We have introduced and addressed the problem of service composition in Chapter 4 of this

thesis. However, our techniques were based on the assumption that all the component services

considered for analysis had uniform semantics—an assumption that does not hold in the real

world. To overcome this restriction, we develop ontology-extended components and introduce

semantically consistent methods for assembling such components into a feasible composition.

Our work, in particular, leverages the existing research on graph-based workflow languages

(GBWL) [191], which allows to model various aspects of traditional workflows. A GBWL

specification of a workflow, known as workflow schema (WFS), describes the components of

www.manaraa.com

123

a

b

c
 q
 y

p
 x

Input to Workflow

Output of Workflow

1
 2
 3

d

e
 s

r
 w

z

Data Flow Link

Control Flow Link

Figure 7.5 Workflow Schema Graph

the workflow and the characteristics of the environment in which the workflow will be executed.

The workflow schemas are connected to yield directed graphs of workflow schemas, called

workflow schema graphs (WSG). The nodes of a WSG correspond to the workflow components

and edges specify the constraints between the components. Figure 7.5 shows a WSG consisting

of three components. Note that each workflow component trivially has a WSG description.

When a workflow is to be executed, a WFS is instantiated resulting in the creation of a

workflow instance (WFI). Each WFI created from a well-formed WFS is guaranteed to conform

to the conditions specified by the WFS. The functional aspect of a workflow schema specifies

the task to be performed by the corresponding workflow instances. The information aspect

of a WSG specifies the data flow between the individual components. Associated with each

component is a set of typed inputs and outputs. At the initiation of a workflow, the inputs are

read, while on termination the results of the workflow are written to the outputs. The data

flow which is defined in terms of the inputs and outputs, models the transfer of information

through the workflow. For example, in Figure 7.5, component 1 has inputs a and b and an

output c, and component 2 has an input p and an output q. Note that the data flow between

components 1 & 2 is represented by the data flow link (c, p). The behavioral aspect of a

WFS specifies the conditions under which an instance of the component will be executed.

The behavior of a workflow is determined by two types of conditions: Control conditions and

Instantiation conditions. The relation between the components is determined by the control

www.manaraa.com

124

conditions, which are expressed by the control flow links. These control flow links specify

the execution constraints. For example, Figure 7.5 shows control flow links (e, r) specifying

that the execution of component 1 has to precede the execution of component 2. In order

for a workflow component to be executed, its instantiation conditions have to be set to T rue.

Specifically, the existence of a control flow link from 1 to 2 does not imply that 2 will necessarily

be executed as soon as 1 is executed (unless the instantiation conditions are satisfied). Note

that in general, it is possible to have cyclic data and control flow links.

From the preceding discussion it follows that modeling workflows is akin to developing

composite services where appropriate data and control flow links are appropriately generated

(either automatically or manually). Furthermore, a workflow or a composite service can be

regarded as a “black box” and encapsulated as a component in a more complex composition

model. Thus, to develop a technique for ontology-based service composition, it suffices to show

how components can be extended with ontologies and how the resulting ontology-extended

components can be composed to yield more complex component services (or equivalently,

workflows).

Recall that a component has associated with it, input, output and control flow attributes.

The control flow attributes take values from the domain D(CtrlType) = {true, false, φ},

where φ corresponds to the initial value of a control flow attribute indicating that the control

flow link is yet to be signaled.

Definition 19 (Ontology-Extended Component) An ontology-extended workflow compo-

nent, s, consists of (see Figure 7.6):

• An associated ontology Os.

• A set of data types τ1, τ2,..., τn, such that τ i ∈ Os, for 1 ≤ i ≤ n.

• A set of input attributes inputs represented as an r-tuple (A1s :τ i1 ,...,Ars:τ ir) (e.g.,

Temp:C is an input attribute of type Centigrade).

• A set of output attributes outputs represented as a p-tuple (B1s :τ j1,...,Bps:τ jp) (e.g.,

Day:DayType is an output attribute of type DayType whose enumerated domain is {Hot,

www.manaraa.com

125

Weather Description

component
 S
 with

ontology
 O
s

cout
s

Control Input

 Attribute
 Input Attributes

Output Attributes

Control Output Attribute

Temperature

Day

cin
s

Figure 7.6 Ontology-Extended Workflow Component

Warm, Cold}).

• A control input attribute, cins, such that τ(cins) ∈ CtrlType. A true value for cins

indicates that the component s is ready to start its execution.

• A control output attribute, couts, such that τ(couts) ∈ CtrlType. A true value for couts

indicates the termination of the execution of component s.

The composition of two components specifies the data flow and the control flow links between

the two components. In order for the meaningful composition of ontology-extended components

to be possible, it is necessary to resolve the semantic and syntactic mismatches between such

components.

Definition 20 (Ontology-Extended Component Composition) Two components s (source)

(with an associated ontology Os) and t (target) (with an associated ontology Ot) are composable

if some (or all) outputs of s are used as inputs for t. This requires that there exists:

• A directed edge, called control flow link, Clink(s, t), that connects the source component

s to the target component t. This link determines the flow of execution between the

components. We have:

Clink(s, t) ∈ couts × cint,

www.manaraa.com

126

which means that there exists x ∈ couts and y ∈ cint such that τ(x) ∈ CtrlType and

τ(y) ∈ CtrlType. For example, in Figure 7.5, (e, r) is a control flow link between the

components 1 and 2.

• A set of data flow links, Dlink(s, t) from the source component s to the target component

t. These links determine the flow of information between the components. We have:

Dlink(s, t) ⊆ outputs × inputt,

which means that there exist attributes x ∈ outputs and y ∈ inputt, such that τ(x) = τ i

∈ Os and τ(y) = τ j ∈ Ot. For example, in Figure 7.5, (c, p) is a data flow link between

the components 1 and 2.

• A set of (user defined) interoperation constraints, IC(s, t), that define a mappings set

MS(s, t) between outputs of s in the context of the ontology Os and inputs of t in the

context of the ontology Ot. Thus, if x : Os = y : Ot is an interoperation constraint, then

x will be mapped to y, and we write x 7→ y.

• A set of (user defined) conversion functions CF (s, t), where any element in CF (s, t)

corresponds to one and only one mapping x 7→ y ∈ IC(s, t). The identity conversion

functions may not be explicitly specified. Thus, |IC(s, t)| ≤ |CF (s, t)|.

Note that, in general, a component may be connected to more than one source and/or target

component(s). The mappings set MS(s, t) and the conversion functions CF (s, t) together

specify a mapping component, which performs the mappings from elements in Os to elements

in Ot.

Definition 21 (Mapping Component) A mapping component, MAP (s, t), which maps the

output and the control output attributes of the source s to the input and the control input

attributes of the target t respectively, consists of:

• Two ontologies, Os and Ot, where Os is associated with the inputs of MAP (s, t), and Ot

is associated with its outputs.

www.manaraa.com

127

Weather Description

Instance Component
 i

true

true

87

Hot

Figure 7.7 Ontology-Extended Component Instance

• A set of mappings MS(s, t) and their corresponding conversion functions CF (s, t) that

perform the actual mappings and conversions between inputs and outputs.

• A set of data inputs inputmap=(A1M
: τs1, · · · , ApM

: τsp), which correspond to the output

attributes of component s, that is, inputmap ≡ outputs. Also, τ s1,..., τ sp is a set of data

types such that τ si ∈ Os, ∀ 1 ≤ i ≤ p.

• A set of data outputs outputmap=(B1M
: τ t1 ,...,BrM

: τ tr), which correspond to the input

attributes of component t, that is, outputmap ≡ inputt. Also, τ t1 ,...,τ tr is a set of data

types such that τ ti ∈ Ot, ∀ 1 ≤ i ≤ r.

• A control input cinmap, which corresponds to the control output attribute, couts of com-

ponent s. Also, τ(cinmap) = CtrlType.

• A control output coutmap, which corresponds to the control input attribute, cint of com-

ponent t. Also, τ(coutmap) = CtrlType.

Ontology-extended component instances (see Figure 7.7) are obtained by instantiating the

ontology-extended components at execution time. This entails assigning values to each of the

component attributes. These values need to be of the type specified in the component schema.

If a component instance ins is based on a component schema sch of the component s, we say

that hasSchema(ins) = sch. We also say that for a given attribute, p, v(p) ∈ D(t) refers to

its value, if τ(p) = t ∈ Os.

www.manaraa.com

128

Definition 22 (Ontology-Extended Component Instance) The instance corresponding

to an ontology-extended workflow component s has to satisfy the following constraints:

• For every input attribute x ∈ inputs, v(x) ∈ D(t), if τ(x) = t ∈ Os (e.g., Temperature

= 87).

• For every output attribute y ∈ outputs, v(y) ∈ D(t), if τ(y) = t ∈ Os (e.g., DayType =

Hot).

• For the control input attribute, cins ∈ {true, false, φ}, a true value indicates that the

component s is ready for execution.

• For the control output attribute, couts ∈ {true, false, φ}, a true value indicates that

the component s has finished its execution.

• For an instantiation condition, inscs ∈ {true, false}. If the evaluation of this condition

returns true, then the execution of the component begins. This condition is defined as:

inscs ≡ {(cins) Λ (∀ x ∈ inputs, ∃ v(x))},

such that τ(x) = t and t ∈ Os.

Semantic Consistency of composition of ontology extended components is necessary to ensure

the soundness of the composition. In particular, the composition of any two ontology-extended

components s (source) and t (target) is said to be consistent, if the following conditions are

satisfied:

• The data & control flow between s and t must be consistent, i.e., control flow should

follow data flow.

• The data and control flow links must be syntactically consistent i.e., there should be no

syntactic mismatches for data flow links.

• The data and control flow links must be semantically consistent, i.e., there should be no

unresolved semantic mismatches along the data and control flow links. Note that the

semantic mismatches between the components are resolved by the mapping components.

www.manaraa.com

129

• Data and control flow links should be acyclic.1

Thus, an ontology-extended workflow (or a composite service) W is semantically consistent if

the composition of each and every pair of source and target components is consistent.

7.4 Discussion

The work proposed in this chapter provides an approach for flexible discovery and com-

position of semantically heterogeneous Web services. We lay stress on the fact that, since

different users may use different ontologies to specify the desired functionalities and capabil-

ities of a service, the ability to specify inter-ontology mappings during service discovery and

composition is needed. Such mappings enable terms and concepts in the service requester’s

ontologies to be brought in correspondence with that of the service provider’s ontologies. In

particular, to address the ontology-based service discovery problem, we propose a taxonomy

for the non-functional attributes, namely QoS, which provides a better model for capturing

various domain-dependent and domain-independent QoS attributes of the services. These at-

tributes allow the users to dynamically select services based on their non-functional aspects.

We also introduced the notion of personalized ranking criteria, which is specified as part of

the service request, for ranking the (discovered) candidate service providers (e.g., ranking ser-

vice providers from high to low based on their Availability). Such a criteria ‘enhances’ the

traditional ranking approach, which is primarily based on the degree of match [115, 140]. On

the other hand, to address the ontology-based composition problem, we introduced the notion

of an ontology-extended component, and illustrated how such components can be composed

into syntactically and semantically consistent compositions (or workflows). A key idea of our

technique is to specify consistent data and control flow between the components that take part

in a composition.

In our setting, we assumed that a domain expert is responsible for specifying specifying

the inter-ontology mappings and correspondences between the terms and concepts. However,

in practice, this is a cumbersome and error-prone process. Towards this end, it is of interest to

1Our framework at present cannot handle cyclic data and control flow links.

www.manaraa.com

130

develop techniques that will enable to model the mappings semi-automatically. Additionally,

the ability to verify the correctness of the semantic correspondences using formalisms such as

Distributed Description Logics [46, 84] is required. Furthermore, in our approach to service

discovery, we only consider non-functional properties in terms of quality of service (QoS). In

reality, services used and provided by individual organizations are based on rigorous service-

level agreements (SLAs). Consequently, consideration of both QoS properties and SLAs in

the context of ontology-based service discovery is of importance. Finally, another topic that

needs attention is the ability to analyze and verify the dynamical and behavioral aspects of

workflow/composite service execution along with the ability to enable semantic mediation

during execution.

www.manaraa.com

131

CHAPTER 8. SYSTEM ARCHITECTURE AND EVALUATION

This chapter describes the MoSCoE (Modeling Web Service Composition and Execution)

system. The chapter is divided into three sections. The first and second sections describe the

MoSCoE architecture and implementation details, respectively, whereas empirical evaluation

is shown in the third section. An open-source implementation of the system is available at

http://www.moscoe.org.

8.1 MoSCoE Architecture

This thesis proposes a new framework MoSCoE (Modeling Web Service Composition and

Execution) for (semi-)automatically realizing new services from a pre-existing set of compo-

nent services. The salient features of the proposed framework are (a) it is interactive (unlike

traditional single-step request-response approaches) which leads to efficient and incremental

service development, (b) it uses automata-theoretic approach to generate provably correct

construction of composite service and (c) the modules of MoSCoE are well-defined and clearly

partitioned to allow developers to evaluate and test newer modules by replacing one module

by another with the same functionality.

Figure 8.1 shows the architectural diagram of MoSCoE, which comprises of two main mod-

ules: a composition management module responsible for statically identifying a composition of

existing services that can realize the desired goals; and an execution management module that

deploys the composite services identified statically. In the current implementation, the system

accepts from the user a high-level (and possibly incomplete) specification of the goal service

in the form of a labeled transition system (LTS, Definition 3). Additionally, the component

services that are also represented using LTSs. Note that in practice, the service providers pub-

http://www.moscoe.org

www.manaraa.com

132

Figure 8.1 MoSCoE Architectural Diagram

lish their services with widely used specification languages such as WSDL [62] and BPEL [16].

Consequently, we have developed a number of translators to convert the WSDL/BPEL de-

scriptions of existing services into LTS. MoSCoE manipulates these input data (user-provided

service specification and published component service descriptions) and automatically iden-

tifies a composition that realizes the goal service. However, in the event that a composition

cannot be realized, the system identifies the cause(s) for the failure of composition and provides

that information to the developer for appropriate reformulation of the goal specification. We

describe both the modules in the following paragraphs.

Composition Management Module: Given the LTS representations of a set of N component

services {LTS1, LTS2, . . . , LTSN} and a desired goal LTSG, service composition in MoSCoE

amounts to identifying a subset of component services, which when composed with a mediator

www.manaraa.com

133

(to be generated) LTSM , realize the goal service LTSG. The role of the mediator is to replicate

input/output actions of the user as specified by the goal and to act as a message-passing

interface between the components and between the component(s) and the client. It is not

capable of providing any functionality (e.g., credit card processing) on its own; these are

provided only by the component services. Algorithm 1 presents a technique for generating

such a mediator and essentially identifies whether LTSM realizes LTSG using the notion of

simulation and bisimulation equivalence. Informally, simulation equivalence ensures that every

behavioral pattern in the goal is present in the composed mediator, whereas bisimulation

equivalence is a symmetric relation which ensures that the composition offers exactly the same

behavior as specified in the goal, and nothing more.

However, algorithm 1 suffers from the state-space explosion problem since the number

of ways the component services can be composed is exponential to the number of component

service states. This becomes a challenge with the increasing size of the search space of available

component services. Hence, to address this limitation, we consider non-functional aspects

(e.g., Quality of Service) in Algorithm 2 to winnow components (thereby reducing the search

space) and compositions that are functionally equivalent to the goal, but violate the non-

functional requirements desired by the user. The non-functional requirements are quantified

using thresholds, where a composition is said to conform to a non-functional requirement if it

is below or above the corresponding threshold, as the case may be. For example, for a non-

functional requirement involving the cost of a service composition, the threshold may provide

an upper-bound (maximum allowable cost) while for requirements involving reliability, the

threshold usually describes a lower-bound (minimum tolerable reliability). If more than

one “feasible composition” meets the goal specification (both functional and non-functional

requirements), our algorithm generates all such compositions and ranks them (Algorithm 3). It

is then left to the user’s discretion to select the best composition according to the requirements.1

In the event that a composition as outlined above cannot be realized using the available

component services, the composition management module provides feedback to the user re-

1This feature of our tool is undergoing implementation at the time of writing this dissertation.

www.manaraa.com

134

garding the cause(s) of the failure (see Section 4.3.3). The feedback may contain information

about the function names and/or pre-/post-conditions required by the desired service that are

not supplied by any of the component services. Such information can help to identify specific

states in the state machine description of the goal service. In essence, the module identifies all

un-matched transitions along with the corresponding goal STS states. Additionally, the failure

of composition could be also due to non-compliance of non-functional requirements specified

by the user. When such a situation arises, the system identifies those requirements that can-

not be satisfied using the available components, and provides this information to the service

developer for appropriate reformulation of the goal specification. This process can be iterated

until a realizable composition is obtained or the developer decides to abort.

Execution Management Module: The result from the composition management module is a

set of feasible compositions each defining a mediator that will enable interaction between

the client and the component services. The execution management module considers non-

functional requirements (e.g., performance, cost) of the goal (provided by the user) and

analyzes each feasible composition. It selects a composition that meets all the non-functional

requirements of the goal, generates executable BPEL code, and invokes the MoSCoE execution

engine. This engine is also responsible for monitoring the execution and recording violation

of any requirement of the goal service at runtime. In the event a violation occurs, the engine

tries to select an alternate feasible composition. Furthermore, during execution, the engine

leverages a pre-defined set of inter-ontology mappings to carry out various data and control

flow transformations 7.2

8.2 Implementation

The MoSCoE tool has been implemented entirely in Java to ensure its portability in multiple

environments. In particular, there are two basic segments, namely the front-end and back-end,

of the implementation that resonate the architecture (Figure 8.1).

2This feature/module of our tool is also undergoing implementation at the time of writing this dissertation.

www.manaraa.com

135

Figure 8.2 UML Representation of a Labeled Transition System

8.2.1 Back-End Implementation

The back-end implementation carries out translation of WSDL/BPEL specifications into

corresponding labeled transition systems as well as identifies a feasible composition (i.e., a

mediator) that realizes the LTS goal specification according to Algorithm 1. A vital aspect of

the back-end implementation is the representation of a labeled transition system in the object-

oriented programming paradigm (in our case, Java). Figure 8.2 shows the UML representation

of the labeled transition system. The class Automata is the root class where the attributes

name, startState, finalStates and transitions correspond to the name, the start state, the

set of final states, and the set of labeled transitions, respectively, of the LTS. Each automaton

(or an LTS) comprises of multiple states and transitions, that are represented by the State and

www.manaraa.com

136

Transition classes, respectively. A State comprises of multiple attributes namely the name of

the state (name), the variables associated with the state (variables), and an indicator for

whether the state is a start state (isStart) or a final state (isFinal). A Transition also

comprises of similar attributes: the name of the transition (name), the state from which the

transition originates (beginState), and the state in which the transition ends (endState).

In addition, each Transition is also annotated with a Guard and an Action. Each Guard

is represented by its name (name), and are essentially a conjunction/disjunction of boolean

predicates. In the current implementation, the allowed predicate Operators are: less-than (<),

greater-than (>), equality (==), and inequality (!=). The Actions comprise of input and

output variables, represented by input and output, respectively. It is to be noted that for

any given action, either the input or output variables can be assigned null, but not both

simultaneously (i.e., “void” actions are not allowed). The actions are further categorized

into InputActions, OutputActions and AtomicActions indicating a situation in which the

service receives a message from the environment (isInput), sends a message to an environment

(isOutput), and provides a function that can be invoked, respectively.

The WSDL/BPEL translator of MoSCoE takes as input valid WSDL/BPEL files and in-

stantiates an Automata object. To carry out this translation, the translator maps various

WSDL/BPEL constructs to the Automata representation of the LTS. For example, Appen-

dices A and B show the BPEL and WSDL descriptions of the e-Auction service, respectively,

and Figure 3.5 shows its corresponding LTS representation as generated by the translator.

Interested readers can refer to Section 3.2.2 for details on the translation process. Note that

the current implementation of the translator cannot handle complex BPEL constructs such

as message correlation, fault handling, and compensation. Furthermore, the implementation

of the composition algorithm also generates the mediator LTS which is represented as an Au-

tomata object. In order to use the generated mediator, the corresponding Automata object

is re-translated into an executable BPEL which, with human assistance (e.g., modifying the

BPEL/WSDL files), can be executed in a BPEL engine (e.g., ActiveBPEL).

www.manaraa.com

137

Figure 8.3 Labeled Transition System Editor-1

8.2.2 Front-End Implementation

The front-end implementation consists of multiple aspects. In particular, the MoSCoE

graphical interface can be utilized by different types of users. They include:

• A service provider who is responsible for providing descriptions of various services that

it publishes which can be used for realizing a feasible composition.

• A service developer who is responsible for modeling complex goal services and generating

a mediator (that realizes the goal service) which can be deployed for execution.

• A service client who is simply responsible invoking the deployed composite service (i.e.,

the mediator).

Note that in many cases, the same entity can assume multiple roles and perform the appro-

priate actions. Figure 8.3 shows a screenshot of the MoSCoE graphical interface which leverages

www.manaraa.com

138

Figure 8.4 Labeled Transition System Editor-2

www.manaraa.com

139

Figure 8.5 Importing Labeled Transition Systems

a widely used open-source platform for visualization called Cytoscape (http://www.cytoscape.org/).

In particular, Figure 8.3 shows the editor for modeling services using LTS-based representa-

tions and we envision that a service developer would use this editor for modeling the goal

services. The states and transitions of the LTS can be modeled by dragging the appropriate

construct from the left pane. Each of these constructs can be highlighted and edited to add

more information. For instance, Figure 8.4 shows how the transition from state s1 to s2 is

edited by essentially adding an atomic function func1 which has an input variable x of type

integer and an output variable y also of type integer. These aspects of the LTS are displayed

in the bottom pane of the graphical interface (see “Attributes Panel” in Figure 8.4).

However, instead of manually modeling the LTS representation of a service, a user of the

system also has the option of importing appropriate BPEL and WSDL files or an object-

oriented (in this case Java) representation of the Automata model (Figure 8.2) as shown in

http://www.cytoscape.org/

www.manaraa.com

140

Figure 8.6 Service Composition and Repository

Figure 8.5. This feature can also be used by the service providers to publish their services

within the MoSCoE repository which can then be used for analysis during the composition

process. Figure 8.6 shows both the service repository and composition views of the tool. In

particular, during the composition process, the service developer can select either all or a

subset of available component services in the repository (for analysis) along with a suitable

goal service (that he/she wants to model) and invoke the composition algorithm (Algorithm 1).

This results into either a successful generation of a mediator (indicating that the goal service

has been realized using the available component services) or a failure of composition. In the

event of a failure, the system highlights the states and transitions along with the guards and

actions (if any) that cannot be realized by the component services. For example, Figure 8.7

shows that the function func12(x;y) in the transition from state s1 to s2 cannot be realized by

any of the existing component services, thereby resulting in the failure of composition. Notice

www.manaraa.com

141

Figure 8.7 Service Composition Error

that the the (unrealizable) transition from s1 to s2 is highlighted in red.

8.3 Empirical Evaluation

8.3.1 Health4U Case Study

To illustrate the salient aspects of MoSCoE as outlined above, we refer back to the Health4U

example introduced in Section 4.2 and modify it. In particular, we assume that the service

developer is assigned to assemble two different composite services, namely Health4U’ and

Health4U”, where the former allows patients to search for an appropriate physician based on

the ailment that is to be treated and make an appointment, whereas the latter allows patients

to search for physicians as well as pediatricians depending not only on the ailment to be

treated, but also on the age of the patient. Specifically, if the patient is less than 15 years old,

www.manaraa.com

142

?getInfo(date,ailment)

SearchPhy(date,ailment;avail)

!app("Send CCInfo")

[confirm=0] [confirm=1]
!app("fail") !app("success")

!app("fail")

0

[avail=0]

s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

[avail=1]

?getCCInfo(CCInfo)

MakeApp(CCInfo)

!app("Send CCInfo")

[confirm=0] [confirm=1]
!app("fail") !app("success")

!app("fail")
[avail=0]

SearchPhy(date,ailment;avail)

[age<14]

SearchPedia(date,ailment;avail)

0

[age>14]

s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

?getInfo(date,ailment,age)

[avail=1]

?getCCInfo(CCInfo)

MakeApp(CCInfo)

(a) (b)

Figure 8.8 LTS representation of (a) Health4U’ (b) Health4U”

Health4U” allows to search for (specialist) pediatricians instead of (regular) physicians. The

corresponding LTS representation of Health4U’ and Health4U” are shown in Figures 8.8(a)

and 8.8(b), respectively. As shown in Section 8.2.2, such a transition system can be either

modeled in MoSCoE by the service developer either using the intuitive graphical LTS editor

or providing the appropriate BPEL and WSDL and invoking the LTS translator. Figure 8.9,

on the other hand, show the available component services that the system can use to realize

Health4U’ and Health4U”. We assume that such services will be published by the service

providers in the MoSCoE repository by providing appropriate BPEL and WSDL descriptions.

The service composition process is initiated by selecting the goal service along with the

set of component services that can be analyzed by the composition algorithm (Algorithm

1) to realize the goal service. For our scenario, we begin by selecting Health4U’ and all

the available component services (Figure 8.9). Once the composition starts, an appropriate

mediator is determined if it exists. Figure 8.10 shows the corresponding mediator generated

www.manaraa.com

143

!app("success")

0

MakeApp(CCInfo;confirm)

s

1
s

3
s

2
s

?getCCInfo(CCInfo)

SearchPhy(date,ailment;avail)

!app("Send CCInfo")
!app("fail")

0

[avail=0]

s

1
s

2
s

3
s

4
s

[avail=1]

?getInfo(date,ailment) ?getInfo(date,ailment,age)

SearchPhy(date,ailment;avail)

0

[age>14]

s

1
s

2
s

3
s

!output(avail)

?getInfo(date,ailment,age)

SearchPedia(date,ailment;avail)

0

[age<14]

s

1
s

2
s

3
s

!output(avail)

(a) (b) (c) (d)

Figure 8.9 LTS representation of (a) MakeApp (b) SearchPhy (c)

SearchPhy’ (d) SearchPedia component services

Figure 8.10 LTS representation of Health4U’ mediator

www.manaraa.com

144

Figure 8.11 LTS representation of Health4U” mediator

to realize Health4U’ using the services shown in Figures 8.9(a) and 8.9(b), whereas Figure

8.11 shows the corresponding mediator generated for Health4U” using the services shown in

Figures 8.9(a), 8.9(c) and 8.9(d). Note that even though it might be possible that there

exists multiple mediators which can realize a given goal service, the current implementation

generates only one—work-in-progress is aimed at enhancing the system to generate all the

possible alternatives.

However, during this process of composition, it is possible that the goal service cannot be

realized from the available component services, thereby resulting in the failure of composition.

As explained in Section 4.3.3, an unique aspect of MoSCoE is the ability to identify such

failures and present them to the service developer for appropriate reformulation. To illustrate

this feature, let us assume that the service developer modifies the Health4U’ by modifying the

atomic action SearchPhy (example, changing its input arguments and narrowing the search to

www.manaraa.com

145

Figure 8.12 Composition Failure for Health4U’ mediator

only specific cities) and tries to determine a feasible composition using the component services

shown in Figures 8.9. As shown in Figure 8.12, this results into a failure of composition because

the required atomic action cannot be provided by any of the available services. Consequently,

the “failed-transition” is highlighted in the goal LTS, which the service developer can mod-

ify/reformulate to achieve a feasible composition. Note that such a process of reformulation

can be repeated multiple times until a mediator is generated or the developer decides to abort.

Furthermore, in the current implementation we present all the failure causes to the developer

for analysis. However, in practice, it is possible that only few of the errors are vital, fixing

which could potentially get rid of the remaining errors. Towards this end, we plan to investi-

gate and implement identification of root failure-causes based on techniques such as root-cause

analysis [173].

www.manaraa.com

146

!result(avail)

0

?itemInfo(code)

s

1
s

2
s

3
s

CheckItem(code;avail)

?cartNum(CNum)

0

DBheck(CNum;auth)

s

1
s

2
s

3
s

!check(auth)

?cartNum(CNum)

0

CCheck(CNum;auth)

s

1
s

2
s

3
s

!check(auth)

Ship(addr;status)

0

!shipStatus(status)

s

1
s

2
s

3
s

?getAddr(addr)

(a) (b) (c) (d)

Figure 8.13 LTS representation of (a) CheckItem (b) DebitCheck (c)

CreditCheck (d) Shipping component services

8.3.2 e-Warehouse Case Study

To further illustrate the applicability of our tool, we adopt the e-Warehouse case study

presented by Berardi et al. [32]. Similar, to the previous case study, we assume that a

service developer is assigned to model a composite service that will allow clients to search for

a particular item of interest using an item code. If the required item is available, the service

allows the client to purchase it using an appropriate payment method (credit or debit card)

and also allows the item to be shipped to a particular address (depending on authorization

of the form of payment). Figure 8.14(a) shows the LTS representation of the e-Warehouse

goal service, whereas Figure 8.13 shows the set of available component services that can be

analyzed to realize a mediator.

The service composition process, similar to the previous case study, is initiated by importing

the BPEL/WSDL files of the corresponding goal and component services or modeling them

directly using the LTS editor. In this case, we select all the services shown in Figure 8.13

along with the component services shown in Figure 8.9 for analysis. Figure 8.14(b) shows the

mediator generated by the tool that realizes the e-Warehouse goal service3.

3Due to higher resolution, Figure 8.14(b) shows the mediator only partially.

www.manaraa.com

147

CCheck(CartNum;auth)

DBCheck(CartNum;auth)
[payBy=Debit]

[auth=1]
Ship(addr;status)

[auth=0]
!purchase("fail")

!shipStatus(status)

[avail=1]
!purchase("Send Cart Num")

!purchase("fail")

0

[avail=0]

s

1
s

2
s

4
s

5
s

6
s

7
s

8
s

9
s

3
s

?purchaseInfo(code,payBy)

CheckItem(code;avail)

?getCartNum(CartNum)

[payBy=CC]

(a)

(b)

Figure 8.14 LTS representation of e-Warehouse (a) goal (b) mediator ser-

vices

www.manaraa.com

148

CHAPTER 9. CONCLUSIONS

9.1 Summary

Recent advances in networks, information and computation grids, and WWW have re-

sulted in the proliferation of physically distributed and autonomously developed software com-

ponents. These developments allow us to rapidly build new value-added applications from

existing ones in various domains such as e-Science, e-Business, and e-Government. In this

context, Service-Oriented Architectures (SOAs) based on Web services that offer standardized

interface description, discovery and communication mechanisms are becoming an attractive

alternative to build software components and to provide seamless application integration.

In this dissertation, we have addressed the problem of realizing a complex service through

a composition of a subset of available component services. Specifically, we have presented

a theoretically sound and complete approach for constructing a mediator that enables the

interactions among component services to realize the behavior of the desired goal service. We

use Labeled Transition Systems (LTSs) augmented with state variables over an infinite domain

and guards over transitions to model the services. A unique feature of the proposed approach

is its ability to work with an abstract (possibly incomplete) specification of a desired goal

service. In the event the goal service cannot be realized (either due to incompleteness of the

specification provided by the developer or the limited functionality of the available component

services), the proposed technique identifies the causes for failure and communicates them to

the service developer. The resulting information guides further iterative reformulation of the

goal service until a composition that realizes the desired behavior is realized or the user (i.e.,

the service developer) decides to abort. Furthermore, the approach allows the developer to

model services that satisfy non-functional requirements (e.g., Quality of Service) in addition

www.manaraa.com

149

to the functional requirements.

We propose an approach for enabling Web service composition via automatic reformula-

tion of the desired (or goal) service specifications in the event when the service composition

algorithms fail to realize the goal service whenever the available component services cannot

be used to “mimic” the structure of the goal service, even if the overall functionality of the

goal service can be realized by an alternative formulation of the goal specification. In partic-

ular, we model services in our technique using labeled transition systems (LTS) and describe

an efficient data structure and algorithms for analyzing data and control flow dependencies

implicit in a user-supplied goal LTS specification to automatically generate alternate LTS spec-

ifications that capture the same overall functionality without violating the data and control

dependencies implicit in the original goal LTS, and determine whether any of the alternatives

can lead to a feasible composition. The result is a significant reduction in the need for the

tedious manual intervention (by the service developers) in reformulating specifications by lim-

iting such interventions to settings where both the original goal LTS as well as its alternatives

cannot be realized using the available component services.

We addressed the problem of context-specific service substitution which requires that some

desired property ϕ of the component being replaced is maintained despite its substitution by

another component. We introduce two variants of the context-specific service substitutability

problem, namely, environment-dependent and environment-independent substitutability that

relax the requirements for substitutability relative to simulation or observational equivalence

between services. The proposed solution to these two problems is based on the well-studied

notion of “quotienting” which is used to identify the obligation of the environment of a service

being replaced in a specific context. We demonstrate that both environment-dependent and

environment-independent service substitutability problems can be reduced to quotienting of

ϕ against the service being replaced and the replacement service and hence, to satisfiability

of the corresponding mu-calculus formulae. The correctness of our technique follows from the

correctness of the individual steps of quotienting and satisfiability.

We proposed a general technique for ontology-based service discovery and composition. In

www.manaraa.com

150

particular, we introduce the notion of ontology-extended components and mappings between

ontologies to facilitate discovery and composition of semantically heterogeneous component ser-

vices. These results are particularly vital within the context of Service-Oriented Architectures,

where services are autonomously developed and maintained, and hence semantic differences

between the various messages, message types, action names, and so on are inevitable.

The algorithms and approaches designed through this dissertation are implemented as

part of the MoSCoE (http://www.moscoe.org) framework and case studies demonstrating its

applicability are presented.

9.2 Contributions

The main contributions of this dissertation include:

• A General Framework for Iterative Composition of Web Services [146, 148,

149, 150, 152, 153, 154, 155]

We have proposed an interactive and verifiable framework Modeling Web Service Compo-

sition and Execution (MoSCoE). This framework provides the architectural foundation

for incremental development of composite services based on theoretically sound and com-

plete algorithms.

• An Approach for Web Service Specification Reformulation

We have proposed an approach for enabling Web service composition via automatic

reformulation of the desired (or goal) service specification by providing the ability to

analyze control and data flow dependencies in the specifications to generate alternative

models, such that the generated models retain the “overall” desired functionality of the

goal service.

• An Approach for Context-Specific Web Service Substitution [151]

We have proposed a general technique for context-specific Web service substitution, where

context refers to the overall functionality of the composition that must be preserved after

http://www.moscoe.org

www.manaraa.com

151

the substitution. In particular, we introduce two variants of the context-specific service

substitutability problem that are based on weaker and flexible requirements compared

to existing techniques.

• A Technique for Ontology-based Service Discovery and Composition [156, 158]

We have proposed a technique for enabling semantic interoperability between multiple

services. Specifically, we introduce ontology-extended components and mappings be-

tween ontologies to facilitate discovery and composition of semantically heterogeneous

component services.

• Open-Source Implementation Framework for Web Service Composition

We provide an implementation of the proposed techniques for service composition in the

MoSCoE prototype. The software is available under GNU public license at the MoSCoE

website: http://www.moscoe.org.

9.3 Further Work

Several future research directions are outlined below:

• Composition Efficiency

The practical feasibility of approaches to automated service composition is ultimately

limited by the computational complexity of the service composition algorithms. How-

ever, the existing composition techniques run into exponential complexities and become

impractical in real-world situations comprising of hundreds, if not thousands, of ser-

vices. Hence, intelligent approaches and heuristics for reducing the number of candidate

compositions that need to be examined are urgently needed in order to scale up service

composition techniques sufficiently to make them useful in practice.

• Execution Models

http://www.moscoe.org

www.manaraa.com

152

Most of the existing implementations for composite Web service execution adopt a cen-

tralized architecture, that is, there exists an orchestrator (representing the composite

service) in a centralized location responsible for coordinating and forwarding the in-

termediate results during the execution. Such a design has its limitation in terms of

scalability, failure resiliency, and network bottlenecks. Towards this end, we believe that

decentralized [39] or Peer-to-Peer (P2P) based architectures such as SELF-SERVE [27]

will prove to be more beneficial in practical settings.

• Failure Handling and Fault Tolerance

Web services are by nature autonomous and have an unpredictable behavior. For ex-

ample, it is possible for a particular Web service Wi that is part of a composition to

become inaccessible or updated (furnishing additional functions and/or removing exist-

ing ones, thereby altering its original behavior). Consequently, an existing integrated

system (or a composite service) which comprises of multiple services including Wi, will

require appropriate update in the form of replacing Wi. However, very limited research

[25, 45] has been carried out to address this issue which needs further investigation. The

problem becomes even more non-trivial when the replacement of the faulty service has

to be carried out, while the composite service is being executed, in such a way that it is

transparent to the client.

• Security

Addressing security concerns is important for any Web-based system and various re-

searchers have proposed mechanisms for ensuring security in Web services (see [91] for

a survey). However, most of techniques build a trust-based framework or assume the

existence of an environment, where once a service is identified to be “good” (loosely

speaking) based on its security policy etc., it is considered to be trustworthy. However,

in certain cases, even though a particular service is trustworthy, it might delegate a part

of its functionality to another service which cannot be trusted. For example, an online

air ticket reservation service Wx might delegate the process of verifying authenticity of

www.manaraa.com

153

payment methods (e.g., credit card) required to purchase the air tickets to a third-party

service provider Wy (in a manner transparent to the client), which may not follow the

same security policy as Wx causing a potential security threat. Unfortunately, it is hard

to detect such vulnerabilities. Furthermore, even if Wx claims to be “good”, it may not

strictly adhere to its own security policy, which makes it even harder to detect whether

the integrity of client information has been compromised. We believe that addressing

these two issues is a significant and important research challenge for the Web services

community.

• Semantic Mediation

Most of the existing and current work on Web service description standards, discovery,

and composition techniques have focused on supporting interoperability at the syntactic

level. However, the issues regarding structural and semantic heterogeneity between ser-

vices themselves as well as the messages exchanged between them are quite complex and

vital for ensuring smooth interoperability between services. In particular, the ability to

mediate messages between semantically heterogeneous services still remains a problem

at large that has received relatively less attention from the research community. Some

of the interesting work in this direction include [133, 141, 174].

• Tool Support

An important component of making techniques for automatic Web service composition

useful for masses is to develop user-friendly tools and platforms that will allow non-

experts to model complex services. Towards this end, model-driven based approaches

[161] has shown some promise, although a lot of research has to be carried out, in par-

ticular by leveraging techniques from human-computer interaction and cognitive science.

• Experimental Benchmark

At present, due to lack of a benchmark (dataset) of Web services, there is no uniform way

of comparing, for example, an existing service composition algorithm with another. We

www.manaraa.com

154

believe that developing a comprehensive benchmark and testbed of Web services will act

as a quick aid for testing and ease of prototyping to evaluate different techniques. Such

a benchmark should comprise of various hardware platforms and a variety of synthetic

and real-world Web services. To the best of our knowledge, WSBen [136] is one of the

preliminary efforts in this direction.

• Applications

Web services and Service-Oriented Architectures are getting widely adopted in many

domains including e-Science, e-Business and e-Government. In this context, some of the

work in progress is aimed at application of the proposed techniques to service composi-

tion, substitution and adaptation tasks that arise in bioinformatics [193], electric power

systems [157, 159, 122] and information retrieval [160, 167].

www.manaraa.com

155

APPENDIX A. BPEL process description of e-Auction service

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns:bpws="http://schemas.xmlsoap.org/ws/2004/03/business-process/"

xmlns:ns="http://SampleProject/SampleProcessArtifacts"

xmlns:ns0="http://SampleProject/SampleProcessInterface"

expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116"

name="SampleProcess"

suppressJoinFailure="yes"

targetNamespace="http://SampleProject">

<import importType="http://schemas.xmlsoap.org/wsdl/" location="SampleProcessArtifacts.wsdl"

namespace="http://SampleProject/SampleProcessArtifacts"/>

<import importType="http://schemas.xmlsoap.org/wsdl/" location="SampleProcess.wsdl"

namespace="http://SampleProject/SampleProcessInterface"/>

<partners>

<partner name="client" serviceLinkType="ns:SampleProcessPartnerLinkType" myRole="seller"/>

<partner name="seller" serviceLinkType="ns:SampleProcessPartnerLinkType" partnerRole="seller"/>

</partners>

<variables>

<variable name="Input" messageType="ns0:sellerRequest"/>

<variable name="sellerSendData" messageType="ns0:sellerAnswerData"/>

<variable name="sellerReplyData" messageType="ns0:sellerAnswerData"/>

<variable name="Output" messageType="ns0:sellerResponse"/>

</variables>

<sequence name="Sequence">

<receive createInstance="yes" name="receive1" operation="check" partnerLink="client"

portType="ns0:SampleProcess" variable="Input"/>

<assign name="AssignInputToSeller">

<copy>

<from variable="Input" part="requestParameters"/>

<to variable="sellerSendData" part="sellerAnswerDataParameters"/>

</copy>

</assign>

<invoke name="invokeSeller" partnerLink="seller" portType="as:sellerAnswerPT"

www.manaraa.com

156

operation="check" inputVariable="sellerSendData"

outputVariable="sellerReplyData"/>

<assign name="AssignSellerOutputToOutput">

<copy>

<from variable="sellerReplyData" part="sellerAnswerDataParameters"/>

<to variable="Output" part="responseParameters"/>

</copy>

</assign>

<reply name="reply1" operation="check" partnerLink="client" portType="ns0:SampleProcess" variable="Output"/>

</sequence>

</process>

www.manaraa.com

157

APPENDIX B. WSDL description of e-Auction service

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns:tns="http://SampleProject/SampleProcessInterface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/" name="SampleProcess"

targetNamespace="http://SampleProject/SampleProcessInterface">

<types>

<schema targetNamespace="http://SampleProject/SampleProcessInterface"

xmlns:tns="http://SampleProject/SampleProcessInterface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<element name="requestParameters">

<complexType>

<sequence>

<element name="input" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="responseParameters">

<complexType>

<sequence>

<element name="output" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="sellerAnswerData">

<complexType>

<sequence>

<element name="sellerText" type="xsd:string"/>

</sequence>

</complexType>

</element>

</schema>

</types>

www.manaraa.com

158

<message name="sellerRequest">

<part name="inputParameters" element="tns:requestParameters"/>

</message>

<message name="sellerResponse">

<part name="operation1Result" element="tns:responseParameters"/>

</message>

<message name="sellerAnswerData">

<part name="sellerAnswerDataParameters" element="tns:sellerAnswerData"/>

</message>

<portType name="sellerAnswerPT">

<operation name="check">

<input message="tns:sellerAnswerData" name="sellerAnswerData"/>

<output message="tns:sellerAnswerData" name="sellerAnswerData"/>

</operation>

</portType>

</definitions>

<?xml version="1.0" encoding="UTF-8"?>

<definitions

xmlns:plnk="http://schemas.xmlsoap.org/ws/2004/03/partner-link/"

xmlns:tns="http://SampleProject/SampleProcessArtifacts"

xmlns:wsdl0="http://SampleProject/SampleProcessInterface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/" name="SampleProcess"

targetNamespace="http://SampleProject/SampleProcessArtifacts">

<plnk:partnerLinkType name="SampleProcessPartnerLinkType">

<plnk:role name="seller" portType="wsdl0:SampleProcess" />

</plnk:partnerLinkType>

<import location="SampleProcess.wsdl" namespace="http://SampleProject/SampleProcessInterface" />

</definitions>

www.manaraa.com

159

BIBLIOGRAPHY

[1] OASIS SOA Reference Model Technical Committee, Last accessed: 2nd June, 2007. URL

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

[2] OMG Object Construct Language, Version 2.0, Last accessed: 7th June, 2007. URL

ttp://www.omg.org/docs/ptc/05-06-06.pdf.

[3] W3C Web Ontology Language, http://www.w3.org/tr/owl-features/. URL http://www.

w3.org/TR/owl-features/.

[4] Web Ontology Language for Web Services, http://www.daml.org/services/owl-s. URL

http://www.daml.org/services/owl-s.

[5] V. Agarwal, K. Dasgupta, and et al. A Service Creation Environment Based on End

to End Composition of Web Services. In 14th International Conference on World Wide

Web, pages 128–137. ACM Press, 2005.

[6] R. Akkiraju, B. Srivastava, A.-A. Ivan, R. Goodwin, and T. F. Syeda-Mahmood. SEMA-

PLAN: Combining Planning with Semantic Matching to Achieve Web Service Compo-

sition. In 4th IEEE International Conference on Web Services, pages 37–44. IEEE CS

Press, 2006.

[7] J. Alexander, D. Box, L. F. Cabrera, and et al. Web Services Enumeration. In

http://www.w3.org/Submission/WS-Enumeration/, 2006.

[8] J. Alexander, D. Box, L. F. Cabrera, and et al. Web Services Transfer. In

http://www.w3.org/Submission/WS-Transfer/, 2006.

www.manaraa.com

160

[9] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the

ACM, 26(11):832–843, 1983.

[10] G. Alonso, F. Casati, H. Kuna, and V. Machiraju. Web Services: Concepts, Architectures

and Applications. Springer-Verlag, 2004.

[11] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. In

Revised Lectures from the International Symposium on Compositionality: The Significant

Difference, pages 23–60. Springer-Verlag, London, UK, 1998. ISBN 3-540-65493-3.

[12] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal

of the ACM, 49(5):672–713, 2002. ISSN 0004-5411.

[13] H. Andersen. Partial Model Checking (extended abstract). In Logic in Computer Science,

1995.

[14] S. Anderson, J. Bohren, and et al. Web Services Secure Conversation Language. In

http://www.ibm.com/developerworks/library/ws-secon/, 2005.

[15] S. Anderson, J. Bohren, and et al. Web Services Trust Language. In

http://www.ibm.com/developerworks/library/ws-trust/, 2005.

[16] T. Andrews, F. Curbera, and et al. Business Process Execution Language for Web

Services, Version 1.1. In http://www.ibm.com/developerworks/library/ws-bpel/, 2003.

[17] G. Antoniou and F. van Harmelen. Web ontology language: OWL. In S. Staab and

R. Studer, editors, Handbook on Ontologies in Information Systems. Springer-Verlag,

2003.

[18] A. Arnold, A. Vincent, and I. Walukiewicz. Games for Synthesis of Controllers with

Partial Observation. Theoretical Computer Science, pages 7–34, 2003.

[19] S. Bajaj, D. Box, and et al. Web Services Policy 1.2 - Framework. In

http://www.w3.org/Submission/WS-Policy/, 2005.

www.manaraa.com

161

[20] K. Ballinger, B. Bissett, and et al. Web Services Metadata Exchange, Version 1.1. In

http://www.ibm.com/developerworks/webservices/library/specification/ws-mex/, 2006.

[21] K. Ballinger, P. Brittenham, and et al. Web Services Inspection Language, Version 1.0.

In http://www.ibm.com/developerworks/webservices/library/ws-wsilspec.html, 2001.

[22] S. Basu and R. Kumar. Quotient-based Control Synthesis for Non-Deterministic Plants

with Mu-Calculus Specifications. In 45th IEEE Conference on Decision and Control,

2006.

[23] S. Basu, M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. M. Verma.

Local and Symbolic Bisimulation Using Tabled Constraint Logic Programming. In Intl.

Conference on Logic Programming, volume 2237, pages 166–180. Springer-Verlag, 2001.

[24] S. Basu and C. R. Ramakrishnan. Compositional analysis for verification of parameter-

ized systems. Theoretical Computer Science, 354(2):211–229, 2006.

[25] B. Benatallah, F. Casati, and F. Toumani. Representing, Analysing and Managing Web

Service Protocols. Data and Knowledge Engineering, 58(3):327–357, 2006.

[26] B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modeling of Web Ser-

vice Conversations. In 15th International Conference on Advanced Information Systems

Engineering, pages 449–467. LNCS 2681, Springer-Verlag, 2003.

[27] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv Environment for Web Services

Composition. IEEE Internet Computing, 7(1):40–48, 2003.

[28] B. Benatallah, Q. Z. Sheng, A. H. H. Ngu, and M. Dumas. Declarative Composition and

Peer-to-Peer Provisioning of Dynamic Web Services. In 18th International Conference on

Data Engineering, pages 297–308. IEEE Computer Society, 2002. ISBN 0-7695-1531-2.

[29] D. Berardi. Automatic Service Composition: Models, Techniques and Tools. PhD thesis,

Università di Roma, La Sapienza, Italy, 2005.

www.manaraa.com

162

[30] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull, and M. Mecella. Automatic Com-

position of Web Services in Colombo. In 13th Italian Symposium on Advanced Database

Systems, pages 8–15, 2005.

[31] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull, M. Lenzerini, and M. Mecella.

Modeling Data and Processes for Service Specifications in Colombo. In Workshop on

Enterprise Modelling and Ontologies for Interoperability, 2005.

[32] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull, and M. Mecella. Automatic Compo-

sition of Transition-based Semantic Web Services with Messaging. In 31st International

Conference on Very Large Databases, pages 613–624, 2005.

[33] D. Berardi, D. Calvanese, D. G. Giuseppe, M. Lenzerini, and M. Mecella. Automatic

Service Composition based on Behavioral Descriptions. International Journal on Coop-

erative Information Systems, 14(4):333–376, 2005.

[34] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

2001.

[35] A. Betin-Can, T. Bultan, and X. Fu. Design for Verification for Asynchronously Com-

municating Web Services. In 14th International World Wide Web Conference, pages

750–759, 2005.

[36] D. Beyer, A. Chakrabarti, and T. Henzinger. Web Services Interfaces. In 15th World

Wide Web Conference, pages 148–159. ACM Press, 2005.

[37] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory 1736-1936. Oxford University

Press, 1986. ISBN 0198539169.

[38] R. Bilorusets, D. Box, and et al. Web Services Reliable Messaging Protocol. In

http://www.w3.org/Submission/ws-messagedelivery/, 2005.

www.manaraa.com

163

[39] W. Binder, I. Constantinescu, and B. Faltings. Decentralized Orchestration of Composite

Web Services. In 4th IEEE International Conference on Web Services, pages 869–876.

IEEE Computer Society, 2006.

[40] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commu-

nications of ACM, 13(7):422–426, 1970. ISSN 0001-0782.

[41] J. Bloomer. Power Programming with RPC. O’Reilly Media, Inc., 1992.

[42] F. Bolton. Pure CORBA. Sams Publishing, 2001.

[43] P. Bonatti, Y. Deng, and V. Subrahmanian. An Ontology-Extended Relational Algebra.

In IEEE International Conference on Information Integration and Reuse, pages 192–199.

IEEE CS Press, 2003.

[44] D. Booth, H. Haas, F. McCabe, and et al. Web Services Architecture, W3C Working

Group Note 11. In http://www.w3.org/TR/ws-arch/, 2004.

[45] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services

Compatible? In 5th International Workshop on Technologies for E-Services, pages 15–

28. LNCS 3324, Springer-Verlag, 2004.

[46] A. Borgida and L. Serafini. Distributed description logics: Assimilating information from

peer sources. Journal of Data Semantics, pages 153–184, 2003.

[47] J. P. Bowen and M. G. Hinchey. Applications of Formal Methods. Prentice Hall, 1995.

ISBN 0133669491.

[48] D. Box, L. F. Cabrera, and et al. Web Services Eventing. In

http://www.w3.org/Submission/WS-Eventing/, 2006.

[49] D. Box, E. Christensen, F. Curbera, and et al. Web Services Addressing, W3C Member

Submission 10 August 2004, 2004.

[50] D. Box, M. Hondo, and et al. Web Services Policy Assertions Language, Version 1.0. In

http://www.ibm.com/developerworks/library/ws-polas/, 2002.

www.manaraa.com

164

[51] T. Bray, J. Paoli, and et al. Extensible Markup Language, Version 1.1. In

http://www.w3.org/TR/2004/REC-xml11-20040204/, 2004.

[52] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In 4th International

Conference on Service-Oriented Computing, pages 27–39. LNCS 4294, 2006.

[53] D. Bryan, V. Draluk, D. Ehnebuske, and et. al. Universal description discovery and

integration, version 2.04. In http://www.uddi.org, 2002.

[54] V. Bullard and W. Vambenepe. Web Services Distributed Management. In

http://www.oasis-open.org/committees/wsdm/, 2006.

[55] T. Bultan, J. Su, and X. Fu. Analyzing Conversations of Web Services. IEEE Internet

Computing, 10(1):18–25, 2006.

[56] L. F. Cabrera, G. Copeland, and et al. Web Services Atomic Transaction, Version 1.0.

In http://www.oasis-open.org/committees/tc home.php?wg abbrev=ws-tx, 2005.

[57] L. F. Cabrera, G. Copeland, and et al. Web Services Coordination, Version 1.0. In

http://www.ibm.com/developerworks/library/ws-coor/, 2005.

[58] D. Caragea, J. Pathak, , and V. Honavar. Learning classifiers from semantically hetero-

geneous data. In Proceedings of the International Conference on Ontologies, Databases,

and Applications of Semantics (ODBASE 2004), 2004.

[59] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): A Modeling

Language for Designing Web Sites. Computer Networks, 33(1-6):137–157, 2000.

[60] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava. Adaptation in Web

Service Composition and Execution. In 4th IEEE International Conference on Web

Services, pages 549–557. IEEE CS Press, 2006.

[61] G. Chafle, P. Doshi, J. Harney, S. Mittal, and B. Srivastava. Improved Adaptation of Web

Service Compositions using Value of Changed Information. In 5th IEEE International

Conference on Web Services, pages 784–791. IEEE CS Press, 2007.

www.manaraa.com

165

[62] E. Christensen, F. Curbera, and et al. Web Services Description Language, Version 1.1.

In http://www.w3.org/TR/wsdl, 2001.

[63] J. Clark and S. DeRose. XML Path Language, Version 1.0. In

http://www.w3.org/TR/xpath, 1999.

[64] M. Crane and J. Dingel. On the Semantics of UML State Machines: Categorization and

Comparision. In Technical Report 2005-501, School of Computing, Queen’s University,

Canada, 2005.

[65] L. de Alfaro and T. A. Henzinger. Interface Automata. In 9th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, pages 109–120. ACM Press,

2001.

[66] G. Della-Libera, M. Gudgin, and et al. Web Services Security Policy Language 1.1. In

http://www.ibm.com/developerworks/library/ws-secpol/, 2005.

[67] S. Dustdar and W. Schreiner. A Survey on Web Services Composition. International

Journal on Web and Grid Services, 1(1):1–30, 2005.

[68] P. V. Eijk and M. Diaz, editors. Formal Description Technique Lotos: Results of the

Esprit Sedos Project. Elsevier Science Inc., 1989. ISBN 0444872671.

[69] E. A. Emerson. Temporal And Modal Logic. In Handbook of Theoretical Computer

Science (vol. B): Formal Models and Semantics, pages 995–1072. MIT Press, 1990. ISBN

0-444-88074-7.

[70] E. A. Emerson. Model Checking and the Mu-Calculus. In Symposium on Descriptive

Complexity and Finite Model, pages 185–214. American Mathematical Society Press,

1997.

[71] E. A. Emerson and C. S. Jutla. The Complexity of Tree Automata and Logics of Pro-

grams. SIAM Journal of Computing, 29(1):132–158, 1999.

www.manaraa.com

166

[72] T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services. Prentice Hall, New Jersey, 2004.

[73] D. Ferguson and M. Stockton. Service-Oriented Architecture: Programming Model and

Product Architecture. IBM Systems Journal, 44(4):753–780, 2005.

[74] A. Ferrara. Web Services: A Process Algebra Approach. In 2nd International Conference

on Service Oriented Computing, pages 242–251. ACM Press, 2004.

[75] R. T. Fielding and R. N. Taylor. Principled Design of The Modern Web Architecture.

In 22nd International Conference on Software Engineering, pages 407–416. ACM Press,

New York, NY, USA, 2000. ISBN 1-58113-206-9.

[76] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley Professional, 2003. ISBN 0321193687.

[77] I. R. Frank E. DCOM: Microsoft Distributed Component Object Model. John Wiley &

Sons Inc., 1997.

[78] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In 13th Intl.

conference on World Wide Web, pages 621–630. ACM Press, 2004.

[79] X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations among Web Services.

IEEE Transactions on Software Engineering, 31(12):1042–1055, 2005.

[80] J. Fuller, M. Krishnan, and et al. Asynchronous Service Access Protocol, Version 1.0. In

http://www.oasis-open.org/committees/tc home.php?wg abbrev=asap, 2006.

[81] G. C. Gannod, J. Timm, and R. J. Brodie. Facilitating the Specification of Semantic

Web Services Using Model-Driven Development. International Journal of Web Services

Research, 3(3):61–81, 2006.

[82] J. Gekas and M. Fasli. Automatic Web Service Composition Based on Graph Net-

work Analysis Metrics. In International Conference on Cooperative Information Systems,

pages 1571–1587. LNCS 3761, Springer-Verlag, 2005. ISBN 3-540-29738-3.

www.manaraa.com

167

[83] A. Gerevini and D. Long. Preferences and Soft Constraints in PDDL3. In ICAPS

Workshop on Preferences and Soft Constraints in Planning, 2006.

[84] C. Ghidini and L. Serafini. Distributed first order logics. In Frontiers of Combining

Systems 2, volume 7, pages 121–139, 2000.

[85] F. Giannotti and G. Manco. Specifying Mining Algorithms with Iterative User-Defined

Aggregates. IEEE Transactions on Knowledge and Data Engineering, 16(10):1232–1246,

2004. ISSN 1041-4347.

[86] S. Graham, D. Hull, B. Muray, and et al. Web Services Notification, Version 1.3 . In

http://www.oasis-open.org/committees/wsn, 2005.

[87] R. Grønmo and I. Solheim. Towards Modeling Web Service Composition in UML. In

2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure,

pages 72–86, 2004.

[88] T. Gruber. Ontolingua: A Mechanism to Support Portable Ontologies. In Technical

Report, KSL-91-66, Stanford University, Knowledge Systems Laboratory, 1992.

[89] M. Gudgin, N. Mendelsohn, and et al. SOAP Message Transmission Optimization Mech-

anism. In http://www.w3.org/TR/soap12-mtom/, 2005.

[90] M. Gudin, M. Hadley, and et al. Simple Object Access Protocol. In

http://www.w3.org/TR/soap/, 2003.

[91] C. Gutiérrez, E. Fernández-Medina, and M. Piattini. A Survey of Web Services Security.

In International Conference on Computational Science and Its Applications, pages 968–

977. LNCS 3043, Springer-Verlag, 2004.

[92] R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Composition.

In 14th Australasian Database Conference, pages 191–200. Australian Computer Society,

Inc., 2003.

[93] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000. ISBN 0262082896.

www.manaraa.com

168

[94] J. Harney and P. Doshi. Adaptive Web Processes Using Value of Changed Information.

In 4th International Conference on Service-Oriented Computing, pages 116–128. LNCS

4294, 2006.

[95] J. Harney and P. Doshi. Speeding Up Adaptation of Web Service Compositions Using

Expiration Times. In 16th World Wide Web Conference, pages 1023–1032. ACM Press,

2007.

[96] S. V. Hashemian and F. Mavaddat. A Graph-Based Approach to Web Services Compo-

sition. In IEEE/IPSJ International Symposium on Applications and the Internet, pages

183–189. IEEE Computer Society, 2005. ISBN 0-7695-2262-9.

[97] S. V. Hashemian and F. Mavaddat. A Graph-Based Framework for Composition of

Stateless Web Services. In 4th IEEE European Conference on Web Services, pages 75–

86. IEEE Computer Society, 2006. ISBN 0-7695-2737-X.

[98] H. Hass. Web Services Message Exchange Patterns. In

http://www.w3.org/2002/ws/cg/2/07/meps.html, 2002.

[99] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988. ISBN 0262081717.

[100] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Welsey, 1979.

[101] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: A Look Behind the

Curtain. In 22nd ACM Symposium on Principles of Database Systems, pages 1–14.

ACM Press, 2003.

[102] R. Hull and J. Su. Tools for Design of Composite Web Services. In ACM SIGMOD Intl.

Conference on Management of Data, pages 958–961, 2004.

[103] R. Hull and J. Su. Tools for Composite Web Services: A Short Overview. SIGMOD

Record, 34(2):86–95, 2005.

www.manaraa.com

169

[104] K. Iwasa, J. Durand, and et al. Web Services Reliable Messaging, Version 1.1. In

http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrm, 2004.

[105] E. M. C. Jr. and D. A. P. Orna Grumberg and. Model Checking. MIT press, 1999. ISBN

0262032708.

[106] A. Karmarkar, M. Hapner, and et al. Web Services Message Delivery, Version 1.0. In

http://www.w3.org/Submission/ws-messagedelivery/, 2004.

[107] N. Kavantzas, D. Burdett, and et al. Web Services Choreography Description Language,

Version 1.0. In http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/, 2005.

[108] A. Kleppe, J. Warmer, and W. Bast. AMDA Explained: The Model Driven Architecture–

Practice and Promise. Addison-Wesley Professional, 2003. ISBN 0132119442X.

[109] R. Kumar, C. Zhou, and S. Basu. Finite Bisimulation of Reactive Untimed Infinite State

Systems Modeled as Automata with Variables. In American Control Conference, 2006.

[110] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-

Theoretic Approach. Princeton University Press, 1994. ISBN 0-691-03436-2.

[111] V.-M. Kwan, F. C.-M. Lau, and C.-L. Wang. Functionality Adaptation: A Context-

Aware Service Code Adaptation for Pervasive Computing Environments. In IEEE/WIC

International Conference on Web Intelligence, pages 358–364. IEEE CS Press, 2003.

[112] S. Lam and A. Shankar. Protocol Verification via Projections. IEEE Transactions on

Software Engineering, 10(4):325–342, 1984.

[113] F. Leymann. Web Services Flow Language, Version 1.0. In

http://www.ebpml.org/wsfl.htm, 2001.

[114] F. Leymann. The (Service) Bus: Services Penetrate Everyday Life. In 3rd International

Conference on Service-Oriented Computing, pages 12–20. LNCS 3826, Springer-Verlag,

2005.

www.manaraa.com

170

[115] L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic Web

Technology. In 12th Intl. Conference on World Wide Web, 2003.

[116] Q. Liang and S. Su. AND/OR Graph and Search Algorithm for Discovering Composite

Web Services. International Journal of Web Services Research, 4(2):48–67, 2005.

[117] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi. Formal Analysis of Compatibility of Web

Services via CCS. In 1st International Conference on Next Generation Web Services

Practices, pages 143–148. IEEE Computer Society, 2005.

[118] H. Lockhart, J. Andersen, and et al. Web Services Federation Language, Version 1.1. In

http://www.ibm.com/developerworks/webservices/library/ws-fed/, 2006.

[119] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. Model-Driven Design

and Deployment of Service-Enabled Web Applications. ACM Transactions on Internet

Technology, 5(3):439–479, 2005.

[120] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility of BPEL

Processes. In International Conference on Internet and Web Applications and Services,

pages 147–155. IEEE CS Press, 2006.

[121] D. Martin, M. Burstein, J. Hobbs, and et al. OWL-S: Semantic Markup for Web Services,

Version 1.1. In http://www.daml.org/services/owl-s, 2004.

[122] J. D. McCalley, V. Honavar, S. M. Ryan, W. Q. Meeker, D. Qiao, R. A. Roberts, Y. Li,

J. Pathak, M. Ye, and Y. Hong. Integrated Decision Algorithms for Auto-steered Electric

Transmission System Asset Management. In 7th International Conference on Compu-

tational Science, pages 1066–1073. LNCS 4487, Springer-Verlag, 2007. ISBN 978-3-540-

72583-1.

[123] D. V. McDermott. Estimated-Regression Planning for Interactions with Web Services.

In 6th International Conference on Artificial Intelligence Planning Systems. AAAI Press,

2002. ISBN 1-57735-142-8.

www.manaraa.com

171

[124] S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,

16(2):46–53, 2001.

[125] M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services in a Cooperative Multi-

platform Environment. In 1st International Workshop on Technologies for e-Services,

pages 44–57. LNCS 2193, 2001.

[126] B. Medjahed and A. Bouguettaya. A Multilevel Composability Model for Semantic Web

Services. IEEE Transactions on Knowledge and Data Engineering, 17(7):954–968, 2005.

[127] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services on the

Semantic Web. The Very Large Databases Journal, 12(4):333–351, 2003.

[128] N. Milanovic and M. Malek. Current Solutions for Web Service Composition. IEEE

Internet Computing, 8(6):51–59, 2004.

[129] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1982.

[130] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[131] R. Murch. Autonomic Computing. IBM Press, 2004. ISBN 013144025X.

[132] A. Nadalin, C. Kaler, and et al. Web Services Security: SOAP Message Security 1.1. In

http://www.oasis-open.org/committees/wss/, 2004.

[133] M. Nagarajan, K. Verma, A. P. Sheth, J. A. Miller, and J. Lathem. Semantic Inter-

operability of Web Services - Challenges and Experiences. In 4th IEEE International

Conference on Web Services, pages 373–382. IEEE CS Press, 2006.

[134] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and F. Yaman.

SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research, 20:379–

404, 2003.

[135] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-

Automated Adaptation of Service Interactions. In 16th World Wide Web Conference,

pages 993–1002. ACM Press, 2007.

www.manaraa.com

172

[136] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara. WSBen: A Web Services Discovery

and Composition Benchmark. In 4th International Conference on Web Services, pages

239–246. IEEE Press, 2006.

[137] S.-C. Oh, D. Lee, and S. Kumara. A Comparative Illustration of AI Planning-based Web

Services Composition. ACM SIGecom Exchanges, 5(5):1–10, 2005.

[138] S.-C. Oh, B.-W. On, E. J. Larson, and D. Lee. Bf*: Web services discovery and com-

position as graph search problem. In IEEE International Conference on e-Technology,

e-Commerce and e-Service, pages 784–786. IEEE Computer Society, 2005. ISBN 0-7695-

2073-1.

[139] B. Orriëns, J. Yang, and M. P. Papazoglou. Model Driven Service Composition. In

1st International Conference on Service Oriented Computing, pages 75–90. LNCS 2910,

Springer-Verlag, 2003.

[140] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web Services

Capabilities. In 1st Intl. Semantic Web Conference, pages 333–347. Springer-Verlag,

2002.

[141] M. Paolucci, N. Srinivasan, and K. Sycara. Expressing WSMO Mediators in OWL-S. In

Semantic Web Services Workshop at International Semantic Web Conference, 2004.

[142] M. P. Papazoglou. Service-Oriented Computing: Concepts, Characteristics and Direc-

tions. In 4th International Conference on Web Information Systems Engineering, pages

3–12. IEEE CS Press, 2003.

[143] M. P. Papazoglou. Web Services Technologies and Standards. ACM Computing Sur-

veys, 2006 (under review). Available at: http://infolab.uvt.nl/pub/papazogloump-2006-

97.pdf. Last accessed: 4th June, 2007.

[144] M. P. Papazoglou and D. Georgakopoulos. Introduction to Special Issue on Service-

Oriented Computing. Communications of ACM, 46(10):24–28, 2003. ISSN 0001-0782.

www.manaraa.com

173

[145] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krämer. Service-

Oriented Computing: A Research Roadmap. In F. Cubera, B. J. Krämer, and M. P.

Papazoglou, editors, Service Oriented Computing (SOC), number 05462 in Dagstuhl Sem-

inar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik

(IBFI), Schloss Dagstuhl, Germany, 2006. ISSN 1862-4405.

[146] J. Pathak. MoSCoE: A Specification-Driven Framework for Modeling Web Services

using Abstraction, Composition, and Reformulation. In 2nd IBM Ph.D. Symposium

at 4th International Service Oriented Computing Conference, pages 1–6. IBM Research

Technical Report, RC24118, 2006.

[147] J. Pathak, J. Bao, D. Caragea, A. Silvescu, C. Andorf, C. Yan, D. Dobbs, and V. Honavar.

INDUS: A System for Information Integration and Knowledge Acquisition from Au-

tonomous, Distributed, and Semantically Heterogeneous Data Sources. In 13th Annual

International Conference on Intelligent Systems for Molecular Biology, Demo Program,

2005.

[148] J. Pathak, S. Basu, and V. Honavar. Modeling Web Service Composition using Symbolic

Transition Systems. In AAAI Workshop on AI-Driven Technologies for Service-Oriented

Computing, pages 44–51. AAAI Press Technical Report WS-06-01, 2006.

[149] J. Pathak, S. Basu, and V. Honavar. Modeling Web Services by Iterative Reformulation

of Functional and Non-Functional Requirements. In 4th International Conference on

Service Oriented Computing, pages 314–326. LNCS 4294, Springer-Verlag, 2006.

[150] J. Pathak, S. Basu, and V. Honavar. Assembling Composite Web Services from Au-

tonomous Components. In J. Soldatos and I. Maglogiannis, editors, Emerging Artificial

Intelligence Applications in Computer Engineering, Frontiers in Artificial Intelligences

and Applications, page xxx. IOS Press, 2007.

www.manaraa.com

174

[151] J. Pathak, S. Basu, and V. Honavar. On Context-Sensitive Substitutability of Web

Services. In 5th IEEE International Conference on Web Services, pages 192–199. IEEE

CS Press, 2007.

[152] J. Pathak, S. Basu, R. Lutz, and V. Honavar. MoSCoE: A Framework for Modeling Web

Service Composition and Execution. In IEEE 22nd Intl. Conference on Data Engineering

Ph.D. Workshop, page x143. IEEE CS Press, 2006. ISBN 0-7695-2571-7.

[153] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Parallel Web Service Composition in

MoSCoE: A Choreography-based Approach. In 4th IEEE European Conference on Web

Services, pages 3–12. IEEE CS Press, 2006.

[154] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Selecting and Composing Web Services

through Iterative Reformulation of Functional Specifications. In 18th IEEE International

Conference on Tools with Artificial Intelligence, pages 445–454. IEEE CS Press, 2006.

[155] J. Pathak, S. Basu, R. Lutz, and V. Honavar. MoSCoE: An Approach for Composing

Web Services through Iterative Reformulation of Functional Specifications. International

Journal on Artificial Intelligence Tools, xxx(xxx):xxx, 2007.

[156] J. Pathak, D. Caragea, and V. Honavar. Ontology-Extended Component-Based

Workflows-A Framework for Constructing Complex Workflows from Semantically Het-

erogeneous Software Components. In 2nd International Workshop on Semantic Web and

Databases, pages 41–56. LNCS 3372, Springer-Verlag, 2004.

[157] J. Pathak, Y. Jiang, V. Honavar, and J. McCalley. Condition Data Aggregation with

Application to Failure Rate Calculation of Power Transformers. In 39th Annual Hawaii

Intl. Conference on System Sciences. IEEE Press, 2006.

[158] J. Pathak, N. Koul, D. Caragea, and V. Honavar. A Framework for Semantic Web Ser-

vices Discovery. In 7th ACM Intl. Workshop on Web Information and Data Management,

pages 45–50. ACM press, 2005.

www.manaraa.com

175

[159] J. Pathak, Y. Li, V. Honavar, and J. McCalley. A Service-Oriented Architecture for

Electric Power System Asset Management. In 2nd International Workshop on Engineer-

ing Service-Oriented Applications: Design and Composition, pages 24–35. LNCS 4652,

Springer-Verlag, 2006.

[160] J. Pathak, N. Rajamani, W. Zadrozny, Y. Deng, M. Devarakonda, and H. Sachar. An

Information Management Framework for Improving Engagement Efficiency in Services

Business. In IBM Research Technical Report, 2006.

[161] K. Pfadenhauer, S. Dustdar, and B. Kittl. Challenges and Solutions for Model Driven

Web Service Composition. In 14th IEEE Intl. Workshop on Enabling Technologies: In-

frastructures for Collaborative Enterprises, pages 126–131. IEEE Press, 2005.

[162] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web

Services by Planning at the Knowledge Level. In 19th Internatinal Joint Conferences on

Artificial Intelligence, pages 1252–1259, 2005.

[163] M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by

Planning in Asynchronous Domains. In 15th Intl. Conference on Automated Planning

and Scheduling, pages 2–11, 2005.

[164] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite

BPEL4WS Web Services. In 3rd IEEE International Conference on Web Services, pages

293–301. IEEE Press, 2005.

[165] M. Potts, I. Sedukhin, and et al. Web Service Manageability Specification, Version 1.0.

In http://www.ibm.com/developerworks/webservices/library/ws-manage/, 2003.

[166] J. Radatz and M. S. Sloman. A Standard Dictionary for Computer Terminology: Project

610. IEEE Computer, 21(2), 1988.

[167] N. Rajamani, M. Devarakonda, Y. Deng, W. Zadrozny, and J. Pathak. Business-Activity

Driven Search: Addressing the Information Needs of Services Professionals. In 5th IEEE

International Conference on Services Computing, pages 644–651, 2007.

www.manaraa.com

176

[168] C. R. Ramakrishnan. A Model Checker for Value-Passing Mu-Calculus Using Logic

Programming. In 3rd International Symposium on Practical Aspects of Declarative Lan-

guages, pages 1–13. Springer-Verlag, London, UK, 2001. ISBN 3-540-41768-0.

[169] J. Rao, P. Kungas, and M. Matskin. Logic-based Web Services Composition: From

Service Description to Process Model. In 2nd IEEE International Conference on Web

Services, pages 446–453. IEEE CS Paper, 2004.

[170] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. In 1st

Intl. Workshop on Semantic Web Services and Web Process Composition, pages 43–54,

2004.

[171] J. Reinoso-Castillo, A. Silvescu, D. Caragea, J. Pathak, and V. Honavar. Information

Extraction and Integration from Heterogeneous, Distributed, Autonomous Information

Sources: A Federated, Query-Centric Approach. In IEEE Intl. Conference on Informa-

tion Integration and Reuse, pages 183–191, 2003.

[172] D. Robins. Interactive Information Retrieval: Context and Basic Notions. Informing

Science, 3(2):57–62, 2000.

[173] D. Robitaille. Root Cause Analysis: Basic Tools and Techniques. Paton Press, 2004.

ISBN 1932828028.

[174] D. Roman, U. Keller, H. Lausen, and et al. Web Service Modeling Ontology. Applied

Ontology, 1(1):77–106, 2005.

[175] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

2002.

[176] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services

using Process Algebra. In 2nd IEEE International Conference on Web Services, pages

43–50. IEEE Computer Society, 2004.

www.manaraa.com

177

[177] F. O. Silva and P. F. Rosa. The Quest for the Web Services Stack: A Fast Trip. In 6th

International Conference on Web Engineering, pages 93–94. ACM Press, New York, NY,

USA, 2006. ISBN 1-59593-352-2.

[178] R. Sinha, P. Roop, and S. Basu. A Model Checking Approach to Protocol Conversion.

In Workshop on Model-driven High-level Programming of Embedded Systems, 2007.

[179] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service

Composition using SHOP. Journal of Web Semantics, 1(4):377–396, 2004.

[180] D. Skogan, R. Grønmo, and I. Solheim. Web Service Composition in UML. In 8th IEEE

Intl. Enterprise Distributed Object Computing Conference, pages 47–57. IEEE Press,

2004.

[181] B. Srivastava, J. P. Bigus, and D. A. Schlosnagle. Bringing Planning to Autonomic

Applications with ABLE. In 1st International Conference on Autonomic Computing,

pages 154–161. IEEE Computer Society, 2004. ISBN 0-7695-2114-2.

[182] C. Stirling. Games and Modal Mu-Calculus. In Second International Workshop Tools

and Algorithms for Construction and Analysis of Systems, pages 298–312, 1996.

[183] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applications. Pacific Journal

of Mathematics, 5(2):285–309, 1955.

[184] M. ter Beek, A. Bucchiarone, and S. Gnesi. Web Service Composition Approaches: From

Industrial Standards to Formal Methods. In 2nd International Conference on Internet

and Web Applications and Services, pages 15–20. IEEE CS Press, 2007.

[185] R. Thompson. Web Services for Remote Portlets Specification, Version 2.0. In

http://www.oasis-open.org/committees/wsrp/, 2007.

[186] J. Timm and G. Gannod. A Model-Driven Approach for Specifying Semantic Web

Services. In 3rd International Conference on Web Services, pages 313–320. IEEE press,

2005.

www.manaraa.com

178

[187] J. Timm and G. Gannod. Specifying Semantic Web Service Compositions using UML

and OCL. In 5th International Conference on Web Services, page xxx. IEEE press, 2007.

[188] P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into

Executable Processes. In 3rd International Semantic Web Conference, pages 380–394.

Springer-Verlag, 2004.

[189] A. Tsalgatidou and T. Pilioura. An Overview of Standards and Related Technology in

Web Services. Distributed and Parallel Databases, 12(2-3):135–162, 2002. ISSN 0926-

8782.

[190] S. Vinoski. WS-Nonexistent Standards. IEEE Internet Computing, 8(6):94–96, 2004.

ISSN 1089-7801.

[191] M. Weske. Workflow Management Systems: Formal Foundation, Conceptual Design,

Implementation Aspects (Habilitationsschrift). PhD thesis, Fachbereich Mathematik und

Informatik, UniversitMnster, Germany, 2000.

[192] G. Woods and T. Gullotta. Web Services Provisioning, Draft Version 0.7. In

http://www.ibm.com/developerworks/webservices/library/ws-provis/, 2003.

[193] F. Wu, P. Zaback, J. Pathak, C. Yan, N. Koul, X. Li, D. Dobbs, and V. Honavar. PPIDB:

A Comprehensive Database of Protein-Protein Interfaces. In Nucleic Acids Research,

Database Issue, Submitted, 2008.

[194] P. Yang, S. Basu, and C. Ramakrishnan. Parameterized Verification of Pi-Calculus

Systems. In 12th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, pages 42–57. LNCS 3920, Springer-Verlag, 2006.

	2007
	Interactive and verifiable web services composition, specification reformulation and substitution
	Jyotishman Pathak
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Service-Oriented Computing
	1.2 Motivation: Web Service Composition
	1.2.1 What are Web Services?
	1.2.2 What is Web Service Composition?
	1.2.3 Research Questions and Challenges

	1.3 Goals and Main Results
	1.4 Thesis Outline

	2. RELATED WORK
	2.1 Web Services: Standards and Related Technologies
	2.2 Web Service Composition
	2.2.1 Techniques based on Formal Methods
	2.2.2 Techniques based on AI Planning
	2.2.3 Techniques based on Model-Driven Architectures
	2.2.4 Techniques based on Graph Theory

	2.3 Additional Research Areas Related to Web Service Composition
	2.3.1 Web Service Substitution
	2.3.2 Web Service Adaptation

	2.4 Discussion

	3. WEB SERVICES AND LABELED TRANSITION SYSTEMS
	3.1 Representing Web Services as Labeled Transition Systems
	3.1.1 Labeled Transition Systems
	3.1.2 Equivalence of Labeled Transition Systems
	3.1.3 Composition of Labeled Transition Systems

	3.2 Transforming Web Service Descriptions to Labeled Transition Systems
	3.2.1 Mapping State Machines to Labeled Transition Systems
	3.2.2 Mapping BPEL to Labeled Transition Systems

	3.3 Discussion

	4. WEB SERVICE COMPOSITION
	4.1 Introduction and Problem Description
	4.2 Illustrative Example
	4.3 Our Approach
	4.3.1 Service Composition in MoSCoE: An Overview
	4.3.2 Algorithm for Mediator Synthesis
	4.3.3 Analysis of Failure of Composition
	4.3.4 Theoretical Analysis
	4.3.5 Composition using Non-Functional Requirements

	4.4 Discussion

	5. WEB SERVICE SPECIFICATION REFORMULATION
	5.1 Introduction and Problem Description
	5.2 Illustrative Example
	5.3 Our Approach
	5.3.1 Functionally Equivalent Web Services
	5.3.2 Web Service Dependency Matrix
	5.3.3 Generation of the Dependency Matrix
	5.3.4 Algorithm for Reformulation-based Web Service Composition

	5.4 Discussion

	6. WEB SERVICE SUBSTITUTION
	6.1 Introduction and Problem Description
	6.2 Illustrative Example
	6.3 Our Approach
	6.3.1 Overview
	6.3.2 Representing Web Service Properties in Mu-Calculus
	6.3.3 Quotienting Mu-Calculus Properties
	6.3.4 Substitutability of Web services
	6.3.5 Theoretical Analysis

	6.4 Discussion

	7. SEMANTIC INTEROPERABILITY
	7.1 Introduction and Problem Description
	7.2 Ontologies and Mappings
	7.3 Our Approach
	7.3.1 Ontology-based Service Discovery
	7.3.2 Ontology-based Service Composition

	7.4 Discussion

	8. SYSTEM ARCHITECTURE AND EVALUATION
	8.1 MoSCoE Architecture
	8.2 Implementation
	8.2.1 Back-End Implementation
	8.2.2 Front-End Implementation

	8.3 Empirical Evaluation
	8.3.1 Health4U Case Study
	8.3.2 e-Warehouse Case Study

	9. CONCLUSIONS
	9.1 Summary
	9.2 Contributions
	9.3 Further Work

	A. BPEL process description of e-Auction service
	B. WSDL description of e-Auction service
	BIBLIOGRAPHY

